The ubiquitin-protein ligase E3C (UBE3C) belongs to the E3 ligase enzyme family and implicates in the ubiquitin-proteasome pathway, thus regulates physiological and cancer-related processes. Here, we investigated the expression and roles of UBE3C in glioma. We demonstrated that UBE3C was overexpressed in glioma tissues and cell lines. Inhibition of UBE3C expression in glioma cells significantly decreased cell migration and invasion in vitro. Mechanistically, we disclosed that UBE3C physically interacted with and ubiquitinated tumor suppressor gene annexin A7 (ANXA7), resulting in ubiquitination and degradation of ANXA7. Our results also revealed that increased UBE3C expression was accompanied by a reduction in ANXA7 protein expression in glioma tissues, but not ANXA7 mRNA. Importantly, the inhibition of ANXA7 expression in gliomas cells with UBE3C interference could rescue the cell invasion. Clinically, UBE3C overexpression significantly correlated with high-grade tumors (p < 0.05), poor overall survival, and early tumor recurrence. Thus, our data reveal that high UBE3C expression contributes to glioma progression by ubiquitination and degradation of ANXA7, and thus presents a novel and promising target for glioma therapy.
Posttranslational modifications of nuclear proteins, including transcription factors, nuclear receptors, and their coregulators, have attracted much attention in cancer research. Although phosphorylation of oligodendrocyte transcription factor 2 (Olig2) may contribute to the notorious resistance of gliomas to radiation and genotoxic drugs, the precise mechanisms remain elusive. We show here that in addition to phosphorylation, Olig2 is also conjugated by small ubiquitin-like modifier-1 (SUMO1) at three lysine residues K27, K76, and K112. SUMOylation is required for Olig2 to suppress p53-mediated cell cycle arrest and apoptosis induced by genotoxic damage, and to enhance resistance to temozolomide (TMZ) in glioma. Both SUMOylation and triple serine motif (TSM) phosphorylation of Olig2 are required for the antiapoptotic function. Olig2 SUMOylation enhances its genetic targeting ability, which in turn occludes p53 recruitment to Cdkn1a promoter for DNA-damage responses. Our work uncovers a SUMOylation-dependent regulatory mechanism of Olig2 in regulating cancer survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.