As a kind of multi-physics imaging approach integrating the advantages of electrical impedance tomography and ultrasound imaging with the improved spatial resolution and image contrast, magneto-acoustic tomography with magnetic induction (MAT-MI) is demonstrated to have the capability of electrical impedance contrast imaging for biological tissues with conductivity differences. By being detected with a strong directional transducer, abrupt pressure change is proved to be generated by the gradient of the induced Lorentz force along the force direction at conductivity boundary. A simplified boundary normal pressure (BNP)-based conductivity reconstruction algorithm is proposed and the formula for conductivity distribution inside the object with the clear physical meaning of pressure derivative, is derived. Numerical simulations of acoustic pressure and conductivity reconstruction are conducted based on a 2-layer eccentric cylindrical phantom model using Hilbert transform. The reconstructed two-dimensional conductivity images accord well with the model, thus successfully making up the deficiency of only imaging conductivity boundary in traditional MAT-MI. The proposed method is also demonstrated to have a spatial resolution of one wavelength. This study provides a new method of reconstructing accurate electrical conductivity and suggests the potential applications of MAT-MI in imaging biological tissues with conductivity difference.
The favorable results provide a new method for anisotropic conductivity measurement, and suggest the application potential of MAT-MI in biomedical imaging and nondestructive testing for conductivity anisotropic tissues.
As a kind of special acoustic field, the helical wavefront of an acoustic vortex (AV) beam is demonstrated to have a pressure zero with phase singularity at the center in the transverse plane. The orbital angular momentum of AVs can be applied to the field of particle manipulation, which attracts more and more attention in acoustic researches. In this paper, by using the simplified circular array of point sources, dual coaxial AV beams are excited by the even-and odd-numbered sources with the topological charges of l E and l O based on the phase-coded approach, and the composite acoustic field with an on-axis center-AV and multiple off-axis sub-AVs can be generated by the superimposition of the AV beams forThe generation of edge phase dislocation is theoretically derived and numerically analyzed for l E = −l O . The numbers and the topological charges as well as the locations of the center-AV and sub-AVs are demonstrated, which are proved to be determined by the topological charges of the coaxial AV beams. The proposed approach breaks through the limit of only one on-axis AV with a single topological charge along the beam axis, and also provides the feasibility of off-axis particle trapping with multiple AVs in object manipulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.