The present article relates to an experimental study on fire risks due to overcharge and external heat of ESS lithium battery. According to the experimental results of overcharge, ignition occurred as combustible gas and smoke was slowly increased after occurrence of venting, and an explosive combustion form accompanied by flame eruption and sparks was displayed as charged energy is rapidly discharged in an instant. On the other hand, according to the experimental results of external heat, as a tremendous amount of combustible gas and smoke was ignited following being discharged after occurrence of vent, the charged energy itself was rapidly reduced due to the discharged energy so that a passive combustion form was observed when compared with overcharge after occurrence of flames. According the analysis results of fire damage characteristics, differences between external heat (External flame) could be found through visual and X-ray inspections. Namely, while inside electrode plate was completely destroyed and perforation of the electrode plate was observed in the case of overcharge, fire damage of the electrode plate was not severe maintaining the form in the case of external heat.
This study is to analyze the explosion and fire risks due to high temperature and short circuit current of Lithium batteries. This study selected the typical types of Li-polymer batteries and Li-ion batteries as the test samples. The result of explosion risk assessment due to the high temperature showed that, while a Li-polymer battery had 170 o C explosion on average, a Li-ion battery had 187 o C explosion. The measurement result of temperature increase due to short circuit current revealed that, in case that protection circuit module (PCM) was normally working, there was little of temperature increase due to over-current limitation. However, in case that PCM was out of order, the temperature of a Li-polymer battery increased up to an average of 115.7 o C and the temperature of a Li-ion battery increased up to an average of 80.5 o C, which showed the higher risks of fire and burn.
This is an experimental study to analyze the explosion and fire hazards of mobile phone batteries. Using the lithium-ion batteries currently used on smart phone as the experiment samples, the experiments were conducted by overcharging, internal and external short circuit, and thermal shock with the potential of explosion and fire caused by careless use or abnormal conditions. The experiment results showed that, in the case of overcharging and external short circuit, there was no explosion and fire hazard in the normal operation of the protection circuit module (PCM), but there were big risks when the PCM faulted conditions were assumed. In the case of the experiments by internal short circuit and thermal shock, such risks varied depending on a battery charge state. In other words, it could be verified that there were low risks of explosion and fire in a full discharge state, but there were high risks in a full charge state. These experiment results suggest that to minimize the explosion and fire hazards of mobile phone batteries, an alarm device is necessary when the PCM fault occurs. In addition, a solid battery case should be made and safety equipment, such as a cooling device to avoid high temperature, is needed.
This is a basic research on potential application of fire detection by measuring fire detection tendency of indoor air quality measurement factors. In this study, operation experiment using smoke detector sensitivity tester and paper fire experiment specified in UL 268 standards were conducted to evaluate the fire detection tendency of indoor air quality measurement factors. Based on the cross-substitution of values measured in the paper fire experiment, PM10 (excluding average) and HCHO (excluding average and maximum) for the indoor air quality meter (IAQ); PM1.0, PM2.5, and PM10 for IAQ S2; and CO (excluding the average and maximum) for combustion gas analyzers showed consistent tendency despite changes in the measured values for smoke generation under all experimental conditions. In particular, PM10 and CO are considered the most applicable fire detection factors among the factors measured in the experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.