Key points
In a cold environment, mammals increase their food intake while fish decrease or stop feeding. However, the physiological value of fasting during cold resistance in fish is currently unknown.
Fasting for more than 48 h enhanced acute cold resistance in zebrafish, which correlated with lipid catabolism and cell damage attenuation.
Lipid catabolism and autophagy were necessary for cold resistance in fish and the inhibition of mitochondrial fatty acid β‐oxidation or autophagy weakened the fasting‐induced cold resistance.
Repression of mechanistic target of rapamycin (mTOR) signalling pathway by rapamycin largely mimicked the beneficial effects of fasting in promoting cold resistance, suggesting mTOR signalling may be involved in the fasting‐induced cold resistance in fish.
Our study demonstrates that fasting may be a protective strategy for fish to survive under cold stress.
Abstract
In cold environments, most homeothermic animals increase their food intake to supply more energy to maintain body temperature, whereas most poikilothermic animals such as fishes decrease or even stop feeding under cold stress. However, the physiological value of fasting during cold resistance in poikilotherms has not been explained. Here, we show that moderate fasting largely enhanced cold resistance in fish. By using pharmacological (fenofibrate, mildronate, chloroquine and rapamycin) and nutritional approaches (fatty acids diets and amino acids diets) in wild‐type or specific gene knock‐out zebrafish models (carnitine palmitoyltransferase‐1b‐deficient strain, CPT1b−/−, or autophagy‐related protein 12‐deficient strain, ATG12−/−), we verified that fasting‐stimulated lipid catabolism and autophagy played essential roles in the improved cold resistance. Moreover, suppression of the mechanistic target of rapamycin (mTOR) pathway by using rapamycin mostly mimicked the beneficial effects of fasting in promoting cold resistance as either the physiological phenotype or transcriptomic pattern. However, these beneficial effects were largely reduced when the mTOR pathway was activated through high dietary leucine supplementation. We conclude that fasting helps fish to resist cold stress by modulating lipid catabolism and autophagy, which correlates with the mTOR signalling pathway. Therefore, fasting can act as a protective strategy of fish in resisting coldness.
Lipophagy degrades lipid droplets (LDs) through the lysosomal degradative pathway, thus plays important roles in regulating lipid metabolism in mammals. However, information on the existence and functions of lipophagy in fish lipid metabolism is still limited. In the present study, we confirmed the existence of lipophagy by observing the structures of LDs sequestered in autophagic vacuoles in the zebrafish liver cell line (ZFL) via electronic microscopy. Moreover, starved cells increased the mRNA expression of the microtubule-associated protein 1A/1B light chain 3 beta (
LC3
), which is a marker protein for autophagy and protein conversion from LC3-I to LC3-II. Inhibiting autophagy with chloroquine increased significantly the LDs content and decreased fatty acid β-oxidation and esterification activities in the ZFL cells cultured in the fed state. Furthermore, inhibiting autophagy function downregulated the mRNA expression of the genes and their proteins related to lipid metabolism. Altogether, the present study verified the existence of lipophagy and its essential regulatory roles in lipid metabolism in fish cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.