Various forms of immunotherapy, such as checkpoint blockade immunotherapy, are proving to be effective at restoring T cell-mediated immune responses that can lead to marked and sustained clinical responses, but only in some patients and cancer types. Patients and tumours may respond unpredictably to immunotherapy partly owing to heterogeneity of the immune composition and phenotypic profiles of tumour-infiltrating lymphocytes (TILs) within individual tumours and between patients. Although there is evidence that tumour-mutation-derived neoantigen-specific T cells play a role in tumour control, in most cases the antigen specificities of phenotypically diverse tumour-infiltrating T cells are largely unknown. Here we show that human lung and colorectal cancer CD8 TILs can not only be specific for tumour antigens (for example, neoantigens), but also recognize a wide range of epitopes unrelated to cancer (such as those from Epstein-Barr virus, human cytomegalovirus or influenza virus). We found that these bystander CD8 TILs have diverse phenotypes that overlap with tumour-specific cells, but lack CD39 expression. In colorectal and lung tumours, the absence of CD39 in CD8 TILs defines populations that lack hallmarks of chronic antigen stimulation at the tumour site, supporting their classification as bystanders. Expression of CD39 varied markedly between patients, with some patients having predominantly CD39 CD8 TILs. Furthermore, frequencies of CD39 expression among CD8 TILs correlated with several important clinical parameters, such as the mutation status of lung tumour epidermal growth factor receptors. Our results demonstrate that not all tumour-infiltrating T cells are specific for tumour antigens, and suggest that measuring CD39 expression could be a straightforward way to quantify or isolate bystander T cells.
Animal models have highlighted the importance of innate lymphoid cells (ILCs) in multiple immune responses. However, technical limitations have hampered adequate characterization of ILCs in humans. Here, we used mass cytometry including a broad range of surface markers and transcription factors to accurately identify and profile ILCs across healthy and inflamed tissue types. High dimensional analysis allowed for clear phenotypic delineation of ILC2 and ILC3 subsets. We were not able to detect ILC1 cells in any of the tissues assessed, however, we identified intra-epithelial (ie)ILC1-like cells that represent a broader category of NK cells in mucosal and non-mucosal pathological tissues. In addition, we have revealed the expression of phenotypic molecules that have not been previously described for ILCs. Our analysis shows that human ILCs are highly heterogeneous cell types between individuals and tissues. It also provides a global, comprehensive, and detailed description of ILC heterogeneity in humans across patients and tissues.
The consensus molecular subtype (CMS) classification of colorectal cancer is based on bulk transcriptomics. The underlying epithelial cell diversity remains unclear. We analyzed 373,058 single-cell transcriptomes from 63 patients, focusing on 49,155 epithelial cells. We identified a pervasive genetic and transcriptomic dichotomy of malignant cells, based on distinct gene expression, DNA copy number and gene regulatory network. We recapitulated these subtypes in bulk transcriptomes from 3,614 patients. The two intrinsic subtypes, iCMS2 and iCMS3, refine CMS. iCMS3 comprises microsatellite unstable (MSI-H) cancers and one-third of microsatellite-stable (MSS) tumors. iCMS3 MSS cancers are transcriptomically more similar to MSI-H cancers than to other MSS cancers. CMS4 cancers had either iCMS2 or iCMS3 epithelium; the latter had the worst prognosis. We defined the intrinsic epithelial axis of colorectal cancer and propose a refined ‘IMF’ classification with five subtypes, combining intrinsic epithelial subtype (I), microsatellite instability status (M) and fibrosis (F).
Tumour-infiltrating lymphocytes (TILs) signify immune response to tumour in a variety of cancers including breast cancer. However, earlier studies examining the clinical significance of TILs in breast cancers have generated mixed results. There are only a few that address the relationship between TILs and clinical outcomes in triple-negative breast cancers (TNBC). The aim of this study is to evaluate the clinical significance of TILs that express CD4 + and CD8 + , in TNBC. Immunohistochemical staining of CD4 and CD8 was performed on tissue microarrays of 164 cases of TNBC. TILs were counted separately as intratumoral when within the cancer cell nests (iTILs) and as stromal when within cancer stroma (sTILs). High CD8 + iTILs and sTILs, and CD4 + iTILs correlated with histologic grade. On Kaplan-Meier analysis, a significantly better survival rate was observed in high CD8 + iTIL (disease-free survival, DFS: P = 0.004, overall survival, OS: P = 0.02) and both high CD4 + iTILs (DFS: P = 0.025, OS: P = 0.023) and sTILs (DFS: P = 0.01, OS: P = 0.002). In multivariate analysis, CD8 + iTILs (DFS: P = 0.0095), CD4 + sTILs (DFS: P = 0.0084; OS: P = 0.0118), and CD4 (high) CD8 (high) CD8 iTILs (DFS: P = 0.0121; OS: P = 0.0329) and sTILs (DFS: P = 0.0295) showed significantly better survival outcomes. These results suggest that high levels of both CD8 + iTILs and CD4 + sTILs as well as CD4 (high) CD8 (high) iTILs and sTILs are independent prognostic factors in TNBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.