National land spatial planning is dominated by urban-agricultural-ecological functions and has become a Chinese national strategic issue. However, the three functional spaces have serious conflicts in the karst areas, causing inconsistencies in regional development and triggering poverty and a more serious situation for the ecological environment. In this study, we used the gray multi-objective dynamic programming model and the conversion of land use and its effects at small region extent model to simulate the developmental structures of future land use in the karst areas of Southwest China under a socioeconomic development scenario, an arable land protection scenario and an ecological security scenario. Finally, based on the coordination of the urban-agricultural-ecological functions, we used a functional space classification method to optimize the spatial structures of the national land space for 2035 year and to identify different functional areas. The results showed that the three scenarios with different objectives had differences in the quantities and spatial structures of land use but that the area of forestland was the largest and the area of water was the smallest in each scenario. The optimization of the national land space was divided into seven functional areas—urban space, agricultural space, ecological space, urban-agricultural space, urban-ecological space, agricultural-ecological space and urban-agricultural-ecological space. The ecological space was the largest and the urban-ecological space was the smallest among seven functional areas. The different types of functional spaces had significant differentiation characteristics in the layouts. The urban-agricultural space, urban-ecological space, agricultural-ecological space and urban-agricultural-ecological space can effectively alleviate the impacts of human activities and agricultural production activities in karst areas, promote the improvement of rocky desertification and improve the quality of the regional ecological environment. The results of this research can provide support for decisions about the balanced development of the national land space and the improvement of environmental quality in the karst areas.
Disordered urban expansion has encroached on a large amount of ecological land, resulting in the steady degradation of urban ecology, which has an adverse effect on the sustainable development of the region. An ecological security pattern can effectively control urban expansion, and it is of great significance to balance urban development and ecological protection. In order to analyze the impact of ecological security patterns on urban expansion, Hangzhou was taken as an example, the CA-Markov model and FLUS model were used to simulate the urban expansion pattern in 2030 under the natural development scenario and the ecological security scenario. The results showed that (1) the ecological source area in the study area is 630.90 km2 and was mainly distributed in the western mountainous area. There are 14 ecological corridors, primarily composed of valleys and rivers. Ecological nodes are mainly distributed on the north and south sides of the main urban area. (2) From 2000 to 2018, the annual increase index (AI) of construction land decreased in the northeast and southeast directions but increased in the northwest and southwest directions, and in the northeast direction the value was always the highest. Except for the southwest direction, the average annual growth rate (AGR) of construction land in the other directions decreased. At a distance from the city center of 30 km, AI was relatively higher and was increasing, while AGR was declining. At a distance of 30–45 km, both AI and AGR were increasing, indicating that the focus of construction land was moving outwards. (3) From 2018 to 2030, under both natural development scenario and ecological security scenario, construction land would keep expanding, but the construction land area, proportion, AI, and AGR of the latter would both be smaller than the former, indicating that the ecological security pattern can effectively curb urban expansion. Because of a large amount area of ecological sources, the expansion of construction land in the southwest direction would be constrained, especially under the ecological security scenario. The methods and results of this study can provide theoretical and application references for urban planning and green development in metropolises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.