Edited by Laszlo NagyKeywords: miR-344 GSK3b Adipogenesis Wnt/b-catenin signaling a b s t r a c t Differentiation of 3T3-L1 cells into adipocytes involves a highly orchestrated series of complex events in which microRNAs might play an essential role. In this study, we found that the overexpression of microRNA-344 (miR-344) inhibits 3T3-L1 cell differentiation and decreases triglyceride accumulation after MDI stimulation. We demonstrated that miR-344 directly targets the 3 0 UTR of GSK3b (Glycogen synthase kinase 3 beta). Knockdown of GSK3b with siRNA results in inhibiting 3T3-L1 differentiation, while its overexpression restores the effect of miR-344. In addition, miR-344 elevates the level of active b-catenin, which is the downstream effector of GSK3b in the Wnt/b-catenin signaling pathway. These data indicate that miR-344 inhibits adipocyte differentiation via targeting GSK3b and subsequently activating the Wnt/b-catenin signaling pathway. Crown
Tumor initiating cells (TIC) of lung cancer are mainly induced by stress-related plasticity. Calcium/Calmodulin dependent protein kinase II alpha (CAMK2A) is a key calcium signaling molecule activated by exogenous and endogenous stimuli with effects on multiple cell functions but little is known about its role on TIC. In human lung adenocarcinomas (AD), CAMK2A was aberrantly activated in a proportion of cases and was an independent risk factor predicting shorter survivals. Functionally, CAMK2A enhanced TIC phenotypes in vitro and in vivo. CAMK2A regulated SOX2 expression by reducing H3K27me3 and EZH2 occupancy at SOX2 regulatory regions, leading to its epigenetic de-repression with functional consequences. Further, CAMK2A caused kinase-dependent phosphorylation of EZH2 at T487 with suppression of EZH2 activity. Together, the data demonstrated the CAMK2A-EZH2-SOX2 axis on TIC regulation. This study provided phenotypic and mechanistic evidence for the TIC supportive role of CAMK2A, implicating a novel predictive and therapeutic target for lung cancer.
Glutathione S‐transferase pi (GSTP1), a phase II detoxification enzyme, is known to be overexpressed and mediates chemotherapeutic resistance in lung cancer. However, whether GSTP1 supports cancer stem cells (CSCs) and the underlying mechanisms in lung adenocarcinoma (LUAD) remain largely unknown. This study unveiled that GSTP1 is upregulated in lung CSCs and supports tumor self‐renewal, metastasis, and resistance to targeted tyrosine kinase inhibitors of LUAD both in vitro and in vivo. Mechanistically, CaMK2A (calcium/calmodulin‐dependent protein kinase 2 isoform A)/NRF2 (nuclear factor erythroid 2‐related factor 2)/GSTP1 is uncovered as a regulatory axis under hypoxia. CaMK2A increased GSTP1 expression through phosphorylating the Sersine558 residue of NRF2 and promoting its nuclear translocation, a novel mechanism for NRF2 activation apart from conventional oxidization‐dependent activation. Upregulation of GSTP1 in turn suppressed reactive oxygen species levels and supported CSC phenotypes. Clinically, GSTP1 analyzed by immunohistochemistry is upregulated in a proportion of LUAD and serves as a prognostic marker for survival. Using patient‐derived organoids from an ALK‐translocated LUAD, the therapeutic potential of a specific GSTP1 inhibitor ezatiostat in combination treatment with the ALK inhibitor crizotinib is demonstrated. This study demonstrates GSTP1 to be a promising therapeutic target for long‐term control of LUAD through targeting CSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.