We report on the polarity control of ZnO grown by plasma assisted molecular beam epitaxy on Ga polar (0001) GaN/sapphire templates simply via the oxygen‐to‐Zn (VI/II) ratio during the growth of a thin nucleation layer at 300 °C. Following Zn pre‐exposure, the ZnO layers nucleated with low VI/II ratios (<1.5) exhibited Zn‐polarity. Those nucleated with VI/II ratios above 1.5, exhibited O‐polarity. Supported by scanning transmission electron microscopic imaging, we have unequivocally demonstrated that polarity inversion takes place without formation of any vertical inversion domains and within one monolayer of presumably non‐stoichiometric GaOx formed at the ZnO/GaN interface. A direct correlation between polarity and strain sign of ZnO layers has been found. The Zn‐polar ZnO layers were under tensile biaxial strain, whereas the O‐polar material exhibited compressive strain. Moreover, the amount of residual strain varied linearly with VI/II ratio used during the low‐temperature nucleation layer growth. Strain control with VI/II ratio has been explained by the potential formation of Zn interstitials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.