The lack of highly efficient, inexpensive catalysts severely hinders large-scale application of electrochemical hydrogen evolution reaction (HER) for producing hydrogen. MoS 2 as a lowcost candidate suffers from low catalytic performance. Herein, taking advantage of its trilayer structure, we report a MoS 2 nanofoam catalyst co-confining selenium in surface and cobalt in inner layer, exhibiting an ultra-high large-current-density HER activity surpassing all previously reported heteroatom-doped MoS 2. At a large current density of 1000 mA cm −2 , a much lower overpotential of 382 mV than that of 671 mV over commercial Pt/C catalyst is achieved and stably maintained for 360 hours without decay. First-principles calculations demonstrate that inner layer-confined cobalt atoms stimulate neighbouring sulfur atoms while surface-confined selenium atoms stabilize the structure, which cooperatively enable the massive generation of both in-plane and edge active sites with optimized hydrogen adsorption activity. This strategy provides a viable route for developing MoS 2-based catalysts for industrial HER applications.
Defects can induce drastic changes of the electronic properties of two-dimensional transition metal dichalcogenides and influence their applications. It is still a great challenge to characterize small defects and correlate their structures with properties. Here, we show that tip-enhanced Raman spectroscopy (TERS) can obtain distinctly different Raman features of edge defects in atomically thin MoS2, which allows us to probe their unique electronic properties and identify defect types (e.g., armchair and zigzag edges) in ambient. We observed an edge-induced Raman peak (396 cm−1) activated by the double resonance Raman scattering (DRRS) process and revealed electron–phonon interaction in edges. We further visualize the edge-induced band bending region by using this DRRS peak and electronic transition region using the electron density-sensitive Raman peak at 406 cm−1. The power of TERS demonstrated in MoS2 can also be extended to other 2D materials, which may guide the defect engineering for desired properties.
Electrochemical tip-enhanced Raman spectroscopy (EC-TERS) is a powerful technique for the in situ study of the physiochemical properties of the electrochemical solid/liquid interface at the nanoscale and molecular level. To further broaden the potential window of EC-TERS while extending its application to opaque samples, here, we develop a top-illumination atomic force microscopy (AFM) based EC-TERStechnique by using a water-immersion objective of a high numerical aperture to introduce the excitation laser and collect the signal. This technique not only extends the application of EC-TERS but also has a high detection sensitivity and experimental efficiency. We coat a SiO2 protection layer over the AFM-TERS tip to improve both the mechanical and chemical stability of the tip in a liquid TERS experiment. We investigate the influence of liquid on the tip–sample distance to obtain the highest TERS enhancement. We further evaluate the reliability of the as-developed EC-AFM-TERS technique by studying the electrochemical redox reaction of polyaniline. The top-illumination EC-AFM-TERS is promising for broadening the application of EC-TERS to more practical systems, including energy storage and (photo)electrocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.