Human mesenchymal stem cells (MSCs) have therapeutic potential because of their ability to self-renew and differentiate into multiple tissues. However, senescence often occurs in MSCs when they are cultured in vitro and the molecular mechanisms underlying this effect remain unclear. In this study, we found that NAD-dependent protein deacetylase SIRT1 is differentially expressed in both human bone marrow-derived MSCs (B-MSCs) and adipose tissue-derived MSCs after increasing passages of cell culture. Using lentiviral shRNA we demonstrated that selective knockdown of SIRT1 in human MSCs at early passage slows down cell growth and accelerates cellular senescence. Conversely, overexpression of SIRT1 delays senescence in B-MSCs that have undergone prolonged in vitro culturing and the cells do not lose adipogenic and osteogenic potential. In addition, we found that the delayed accumulation of the protein p16 is involved in the effect of SIRT1. However, resveratrol, which has been used as an activator of SIRT1 deacetylase activity, only transiently promotes proliferation of B-MSCs. Our findings will help us understand the role of SIRT1 in the aging of normal diploid cells and may contribute to the prevention of human MSCs senescence thus benefiting MSCs-based tissue engineering and therapies.
BackgroundThe hypothalamus is an essential part of the brain that responds to a variety of signaling including stressful stimulations and acupuncture signals. It is also the key element of the hypothalamic-pituitary-adrenal cortex axis(HPAA). The effect of acupuncture is transmitted into the brain from the distance sensory receptor around the acupoints via peripheral nerves and body fluid. In vivo recording the activities of stress reaction neurons (SRNs, CRH-like neurons) in hypothalamic paraventricular nucleus (PVN) in response to the stimulations from different acupoints could therefore objectively reflect the acupuncture afferent effect.MethodsIn this study, the electrophysiological method was adopted to record synchronously the activities of 43 CRH-like neurons after acupuncture stimulations at 33 acupoints located at the different regions. The acupoints that specifically activate certain CRH-like neurons (specificity acupoints) were selected. Furthermore, we investigated in a rat model of unpredictable chronic mild stress (UCMS) whether these specificity acupoints regulate HPAA function. The endpoints of measurement include corticosterone (CORT) level in peripheral blood, the expressions of corticotrophin releasing hormone (CRH) and glucocorticoid receptor (GR) protein in PVN and the animal behavioral performance.ResultsOur results reveal that Shenshu (BL23), Ganshu (BL18), Qimen (LR14), Jingmen (GB25), Riyue (GB24), Zangmen (LR13), Dazui (DU14) and auricular concha region (ACR) are the specificity acupoints; and Gallbladder, Liver and Du Channels were the specificity Channels. The acupoints on Gallbladder Channel and the acupoints innervated by the same spinal cord segments as the adrenal gland demonstrated dramatic effects.ConclusionsThis study provides a new platform to further explore acupoints specificity in the regulation of HPAA activities.
This project was focused on the study of the effect of the different acupoints on visceral hypersensitivity and the correlation with the brain-gut axis. By using a mouse model of zymosan-induced colorectal hypersensitivity, and observing the response of hypersensitivity model to colorectal distension stimulation in acupuncture at different acupoints, we selected the specific acupoints. With immunohistochemical staining method, we observed c-fos expression, distribution and changes after acupuncture on sensory pathway, including colorectum, spinal dorsal horn and different regions of brain center in the model with colorectal distension stimulation, and evaluated the acupuncture effect on brain-gut axis. The results revealed that the effectiveness of acupuncture for alleviating visceral hypersensitivity was different at individual acupoint, meaning Tianshu (ST25), Zusanli (ST36) and Shangjuxu (ST37) > Quchi (LI11) and Dachangshu (BL25) > Ciliao (BL32). C-fos expression was concentrated in anterior cingulate cortex, hypothalamus, spinal dorsal horn and colorectum in model of zymosan-induced colorectal hypersensitivity and it was down-regulated after acupuncture. The results demonstrates that the acupoint specificity presents in acupuncture for relieving visceral hypersensitivity and the effects are more predominated at the acupoints on stomach meridian innervated by the same or adjacent spinal ganglion segments. The model of zymosan-induced colorectal hypersensitivity can be the animal model simulating brain-gut interaction.
Background: To assess the effectiveness and safety of moxibustion for post-stroke depression (PSD). Methods: A search was conducted in the following English and Chinese databases: Medline, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), China National Knowledge Infrastructure (CNKI), Chinese Biomedical Literature (CBM), VIP and Wanfang. The outcomes included Hamilton Depression Rating Scale (HAMD), effective rate, and Modified Edinburgh-Scandinavian Stroke Scale (MESSS) scale. The formulation of search strategy, data extraction, and quality evaluation of involved studies was performed according to Cochrane handbook guidelines. The software RevMan 5.4 and Stata 16 were used for data analysis. The evidence quality of each outcome was evaluated by GRADEpro guideline development tool (GDT).Results: A total of 14 trials with 863 participants were included. A certain risk of bias of unclear or high was detected in the included studies. Compared with the control group, adding moxibustion could change
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.