Fires pose an enormous threat to human safety and many spectacular fires in under-construction buildings were reported over the past few years. Many construction sites only rely on fire extinguishers, as under-construction buildings do not contain a permanent fire protection system. Traditional safety planning lacks a justified approach for the firefighting equipment installation planning in the construction job site. Even though many government agencies made safety regulations for firefighting equipment installations, it is still a challenge to translate and execute these rules at the job site. Currently, the construction industry is devoted to discovering all the possible applications of Building Information Modelling (BIM) technology in the entire phases of the project life cycle. BIM technology enables the presentation of facilities in 3-D and offers rule-based modeling through visual programming tools. Therefore, this paper focuses on a visual language approach for rule translation and a multi-agent-based construction fire safety planning simulation in BIM. The proposed approach includes three core modules, namely: (a) Rule Extraction and Logic Development (RELD) Module, (b) Design for Construction Fire Safety (DCFS) Module, and (c) Con-fire Safety Plan Simulation (CSPS) Module. In addition, the DCFS module further includes three submodules, named as (1) Firefighting Equipment Installation (FEI) Module, (2) Bill of Quantities (BoQs) for firefighting Equipment (BFE) Module, and (3) Escape Route Plan (ERP) Module. The RELD module converts the OSHA fire safety rule into mathematical logic, and the DCFS module presents the development of the Con-fire Safety Planning approach by translating the rules from mathematical logic into computer-readable language. The three sub-modules of the DCFS module visualize the outputs of this research work. The CSPS module uses a multi-agent simulation to verify the safety rule compliance of the portable firefighting equipment installation plan the system in a BIM environment. A sample project case study has been implemented to validate the proof of concept. It is anticipated that the proposed approach has the potential to helps the designers through its effectiveness and convenience while it could be helpful in the field for practical use.
Construction sites are considered as complicated work environments. Various concurrent activities may overlap apropos to time and workspace, predisposing them to spatial–temporal exposure and repetitive accidents. Detecting the characteristics of repetitive accidents before the construction stage contributes to prevent injuries and fatalities caused by spatial—temporal conditions at construction job sites. To resolve this problem, this study proposes a novel hazard identification approach through spatial–temporal exposure analysis called HISTEA, which integrated scenario analysis of accident cases into 4D building information modeling (BIM). The proposed approach consists of three modules: (1) spatial–temporal hazard investigation (SHI) to analyze the accident cases and develop the hazard database of the spatial–temporal overlap condition of pair-wise activities; (2) spatial–temporal condition identification (SCI) to determine the conflict among different activities, considering the workspace and time overlap from the 4D BIM model; and (3) safety information integration (SII) to deliver safety knowledge to the project team through a web-based application. To illustrate and validate this approach, a HISTEA prototype for foundation work has been developed to be used at the pre-construction stage. The developed prototype is based on the analysis of 496 accident reports extracted from the integrated management information system (IMIS) of the Occupational Safety and Health Administration for the SHI module database. The proposed approach is expected to proactively aid project teams in detecting hazards that ultimately reduce repetitive accidents caused by overlapping activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.