Recently, a cohort of miRNAs, including miR-31, was reported to be downregulated during osteogenic induction by miR microarray analysis. It remains unclear how changes in miR-31 expression collaborate with bone transcription factors to activate the biological pathways that regulate the differentiation of bone mesenchymal stem cells (BMSCs). Here the effects of miR-31, Runx2, and Satb2 on the osteogenic differentiation of BMSCs were investigated using mimics and inhibitors of miR-31, small interfering RNA for knockdown of Runx2 and plasmids for overexpression of Runx2. Our results showed that miR-31 expression decreased progressively in BMSC cultures during differentiation. Inhibition of miR-31 dramatically increased the alkaline phosphatase activity and mineralization in BMSC cultures. Additionally, miR-31 diminished the levels of the Satb2 protein without significantly affecting Satb2 mRNA levels, and Runx2 directly repressed miR-31 expression. Overexpression of miR-31 significantly reduced expression of the osteogenic transcription factors OPN, BSP, OSX, and OCN, but not Runx2. Furthermore, the high expression of miR-31 in BMSCs cultured in the proliferation medium repressed Satb2 protein levels, which may contribute to the maintenance of BMSCs in an undifferentiated state. In conclusion, our results suggest that a Runx2, Satb2, and miR-31 regulatory mechanism may play an important role in inducing BMSC osteogenic differentiation. The results of this study provide us with a better understanding of the molecular mechanisms that govern the BMSC fate.
Background
Postmenopausal osteoporosis (PMO) that results from estrogen withdrawal is the most common primary osteoporosis among older women. However, little is known about the mechanism of PMO, and effective treatment of PMO is limited.
Methods
We used real-time polymerase chain reaction (qPCR), Western blotting, and RNA pull down to investigate the relationship between miR-186 and MOB Kinase Activator 1A (Mob1). Also, we investigated the effect of exosome in osteogenesis using alkaline phosphatase (ALP) staining. And hematoxylin eosin (HE) staining was used to verify the osteogenesis in PMO model.
Results
Exosomal miR-186 plays an important role in bone formation. The results of miRNA-seq and q-PCR showed that miR-186 was upregulated in a PMO + Exo treatment group. Results of RNA-pull down and luciferase reporter assays verified interactions between miR-186 and Mob1. We also verified the Hippo signaling pathway plays an important role in osteogenesis.
Conclusions
We concluded that exosomes derived from human bone marrow mesenchymal stem cells (hBMSCs) can transfer miR-186 to promote osteogenesis in ovariectomy (OVX) rats through the Hippo signaling pathway.
This research planned to grab the expression and impact of lncRNA HAGLROS in the biology and progression of mantle cell lymphoma. HAGLROS level in mantle cell lymphoma cell lines was detected, followed by investigation of the influences of HAGLROS silencing on Mino cell biological performances. Afterwards, the express patterns of HAGLROS vs. miR-100, as well as miR-100 vs. ATG5, were investigated. Furthermore, whether HAGLROS could regulate the signals of PI3K/AKT/mTOR was analyzed. HAGLROS level was high in mantle cell lymphoma cell lines. Silencing of HAGLROS inhibited Mino cell viability, increased apoptosis and decreased autophagy by sponging miR-100. Moreover, miR-100 targeted ATG5 fixed. Furthermore, HAGLROS suppression resulted in inhibition on the briskness of PI3K/ AKT/mTOR signals. Concurrently HAGLROS suppression and miR-100 inhibitor markedly changed the impacts of HAGLROS down-regulation alone on activating PI3K/AKT/mTOR signals, which could further change after co-transfection of si-HAGLROS þ miR-100 inhibitor þ siATG5. Our findings point out that expression of HAGLROS is increased in mantle cell lymphoma cells and may function as an oncogene in mantle cell lymphoma. HAGLROS may promote tumour development by regulating miR-100/ATG5/ PI3K/AKT/mTOR axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.