Despite the knowledge on many genetic variants present in osteosarcoma, the complexity of this disease precludes placing its biology into a simple conceptual framework. RECQL is a DNA helicase involved in DNA mismatch repair and has been reported to be associated with many human cancers. We aimed to investigate the association of RECQL genetic polymorphism with osteosarcoma in a Chinese population. We selected three polymorphisms of the RECQL5 gene (rs820196, rs820200, and rs4789223) in the present study. TaqMan method was utilized for genotyping these three SNPs in 212 patients with osteosarcoma and 240 age- and sex-matched noncancer controls. In our study, we found that CC genotype in rs820196 (17.5 vs 8.3%, P = 0.005) and AA genotype in rs4789223 (21.7 vs 14.2, P < 0.001) were more frequent in osteosarcoma group compared to the control group, respectively. We also found that the C allele of rs820196 (OR = 1.492, 95% CI 1.138 ∼ 1.951; P = 0.004) and A allele of rs4789223 (OR = 1.767, 95% CI: 1.354 ∼ 2.301; P < 0.001) were common in the osteosarcoma patients than those in the control subjects, respectively. Haplotype analysis showed that TTA (OR = 3.469, 95% CI 1.798 ∼ 6.695; P < 0.001) was associated with increased risk for osteosarcoma. However, the TTG (OR = 0.578, 95% CI 0.442 ∼ 0.756) was associated with decreased risk for osteosarcoma. Our results suggested that RECQL5 genetic polymorphisms were associated with osteosarcoma in a Chinese population.
An increasing number of studies have demonstrated that microRNAs participate in the development of osteosarcoma by acting as tumour suppressor or tumour-promoting genes. We investigated the role of miR-504 in the growth and metastasis of osteosarcoma. The expression of miR-504 in clinical osteosarcoma samples was higher than that in the adjacent normal tissue and correlated with tumour size and clinical stage. Tumour protein p53-inducible nuclear protein 1 (TP53INP1) was downregulated in the clinical osteosarcoma samples compared with the adjacent normal tissues and was consistently correlated with the clinical stage. The results of dual-luciferase reporter assay and western blot analysis demonstrated that the TP53INP1 gene is a direct target of miR-504. Altogether, the Cell Counting Kit-8 (CCK-8), the colony formation, the flow cytometry and the Transwell assay results demonstrated that miR-504 promoted osteosarcoma cell growth and metastasis in vitro. P73, P21, Bax, cleaved-caspase-3 and secreted protein acidic and rich in cysteine (SPARC) were associated with the suppressive role of miR-504/TP53INP1. The overexpression of miR-504 in osteosarcoma xenografts enhanced the tumour growth and increased the metastatic burden. Collectively, these results revealed that TP53INP1 is a target gene of miR-504 and that miR-504 enhances osteosarcoma growth and promotes distant metastases by targeting TP53INP1. Thus, miR-504/TP53INP1 may be associated with osteosarcoma size and clinical stage.
Developmental dysplasia of the hip (DDH) is a congenital or developmental deformation or misalignment of the hip joint that is affected by environmental and genetic factors. Recently, polymorphisms in both TGFB1 and IL-6 have been identified as being significantly associated with hip osteoarthritis in Caucasians. In this study, we conducted a case-control study involving 4,206 Han Chinese individuals to investigate the effects of TGFB1 and IL-6 on the disease status and severity of DDH. A total of 32 single-nucleotide polymorphisms (SNPs) were selected to ensure coverage of the two genetic loci. We found SNP rs1800470 in TGFB1 (OR = 1.255, P = 0.0004) and rs1800796 (OR = 0.84, P = 0.0228) in IL-6 to be significantly associated with DDH in this cohort. Further haplotype-based analysis replicated this significant result. Another SNP in IL-6, rs1800796, showed a marginally significant association with DDH. As a non-synonymous SNP, rs1800470 alters the amino acid sequence of the polypeptide encoded by TGFB1; however, bioinformatics analyses revealed that this SNP has limited functional significance. No significant results were obtained in an association study focusing on the severity of DDH and epistasis analysis. Our findings support an important role for TGFB1 in the risk of DDH. Further research is needed to validate the weak association between rs1800796 in IL-6 and DDH.
Abstract. The association of TRIM29 overexpression with cancer progression and poor clinical prognosis has been reported in the context of several types of cancers. In the present study, we investigated the prognostic relevance of TRIM29 and its involvement in the progression of human osteosarcoma. To the best of our knowledge, this is the first study to demonstrate a major role of TRIM29 in osteosarcoma. Our results showed that the expression of TRIM29 in osteosarcoma tissues was much higher than that in normal bone tissues. Furthermore, TRIM29 expression was significantly correlated with tumor size, recurrence, metastasis and overall survival time. High expression of TRIM29 and presence of metastasis were independent predictors of poor prognosis in these patients. Both protein and mRNA expression of TRIM29 in osteosarcoma cell lines were significantly higher than those in osteoblast cell line, hFOB1.19. Moreover, the results indicated that TRIM29 promoted migration and invasive growth of osteosarcoma cells by inducing epithelial-mesenchymal transition. Therefore, ectopic expression of TRIM29 potentially contributes to metastasis and poor prognosis in patients with osteosarcoma. In summary, TRIM29 is a potential prognostic biomarker and a therapeutic target for patients with osteosarcoma.
Analgesic strategy of a single drug analgesia in bone cancer pain (BCP) has shifted to combined analgesia with different drugs which have different mechanism. After tumor cell inculation, the activation of signal transducer and activator of transcription (STAT3) and extracellular signal-regulated kinase (ERK) signaling pathway are involved in the development and maintenance of BCP, whereas a decrease in the expression of spinal STAT3 and ERK through using their specific blocker, lead to attenuation of BCP. Hence, in this study, we clarified that intrathecal (i.t.) injection of midazolam (MZL) and ropivacaine (Ropi) induces synergistic analgesia on BCP and is accompanied with different mechanisms of these analgesic effect. Hargreaves heat test was used to detect the analgesic effect of single dose of i.t. MZL, Ropi and their combination on the BCP rats. At consecutive daily administration experiment, thermal hyperalgesia was recorded, and immunohistochemical staining was used to detect the expression of c-Fos, spinal glial fibrillary acidic protein (GFAP) and ionized calcium binding adapter molecule-1 (IBA-1). Then, western blot analysis was used to examine spinal TSPO, GFAP, IBA-1, pERK/ERK and pSTAT3/STAT3 levels on day 14 after tumor cell inoculation. i.t. MZL or Ropi showed a short-term analgesia dose-dependently, and MZL displayed better effect on inhibition of pSTAT3 expression than pERK, but Ropi was just the reverse, then consecutive daily administrations of their combination acted synergistically to attenuate thermal hyperalgesia with downregulated spinal 'neuron-astrocytic activation' in the BCP rats. i.t. co-delivery of MZL and Ropi shows synergistic analgesia on the BCP with the inhibition of spinal 'neuron-astrocytic activation'. Spinal different signaling pathway inhibition for MZL and Ropi may be involved in this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.