Parkinson disease (PD) is a neurodegenerative disease characterized by selective loss of dopaminergic (DA) neurons in the midbrain. The regulatory role of a variety of microRNAs in PD has been confirmed, and our study is the first to demonstrate that miR-3473b is involved in the regulation of PD. In vitro, an miR-3473b inhibitor can inhibit the secretion of inflammatory factors (TNFα and IL-1β) in moues microglia cell line (BV2) cells induced by lipopolysaccharide (LPS) and promote autophagy in BV2 cells. In vivo, miR-3473b antagomir can inhibit the activation of substantia nigra pars compacta (SNpc) microglia of C57BL/6 mice induced by 1-Methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP) and promote autophagy. Deletion of TREM2, one of the most highly expressed receptors in microglia, leads to the occurrence and development of PD. ULK1 is a component of the Atg1 complex. Deletion of ULK1 aggravates the pathological reaction of PD. TREM2 and ULK1 are predicted potential targets of miR-3473b by Targetscan. Then, the results of our experiments indicate that transfection with a miR-3473b mimic can inhibit the expression of TREM2 and ULK1. Data from a double luciferase experiment indicate that the 3'-UTR of TREM2, but not ULK1, is the direct target of miR-3473b. Then we aim to investigate the regulation of TREM2 and ULK1 in PD. We found that the expression of p-ULK1 was significantly increased via up-regulation of TREM2. The increased expression of p-ULK1 can promote autophagy and inhibit the expression of inflammatory factors. The regulation of ULK1 by miR-3473b may be accomplished indirectly through TREM2. Thus, miR-3473b may regulate the secretion of proinflammatory mediators by targeting TREM2/ULK1 expression to regulate the role of autophagy in the pathogenesis of inflammation in Parkinson's disease, suggesting that mir-3473b may be a potential therapeutic target to regulate the inflammatory response in PD.
Dihydroartemisinin (DHA) is a derivative of the herb Artemisia annua L. that has prominent immunomodulatory activity; however, its underlying mechanism remains elusive. Inflammatory bowel disease (IBD) is an idiopathic inflammatory condition characterized as an autoimmune disorder that includes dysfunctions in the T helper (Th)/T regulatory cell (Treg) balance, which normally plays pivotal roles in immune homeostasis. The aim of this study was to explore the potential of DHA to ameliorate IBD by restoring the Th/Treg cell balance. To this end, we established mouse models of colitis induced by oxazolone (OXA) and 2,4,6-trinitro-benzene sulfonic acid (TNBS). We then treated mice with DHA at 4, 8, or 16 mg/kg/day. DHA treatment ameliorated colitis signs and reduced lymphocyte infiltration and tissue fibrosis. Moreover, DHA decreased the numbers of Th1 and Th17 cells and Th9 and Th22 cells in TNBS- or OXA-induced colitis, respectively, and increased Tregs in both models. DHA (0.8 mg/mL) also inhibited activated CD4+ T lymphocytes, which was accompanied by apoptosis induction. Moreover, it promoted heme oxygenase-1 (HO-1) production in vitro and in vivo, concomitant with CD4+ T cell apoptosis and restoration of the Th/Treg balance, and these effects were blocked by treatment with the HO-1 inhibitor Sn-protoporphyrin IX. Overall, these results suggest that DHA is a novel and valuable candidate for IBD therapy or Th/Treg immunoregulation.
Parkinson’s disease is a neurodegenerative disorder with an inflammatory response as the core pathogenic mechanism. Previous human genetics findings support the view that the loss of TREM2 function will aggravate neurodegeneration, and TREM2 is one of the most highly expressed receptors in microglia. However, the role of TREM2 in the inflammatory mechanism of PD is not clear. In our study, it was found both in vivo and in vitro that the activation of microglia not only promoted the secretion of inflammatory factors but also decreased the level of TREM2 and inhibited the occurrence of autophagy. In contrast, an increase in the level of TREM2 decreased the expression of inflammatory factors and enhanced the level of autophagy through the p38 MAPK/mTOR pathway. Moreover, increased TREM2 expression significantly decreased the apoptosis of dopaminergic (DA) neurons and improved the motor ability of PD mice. In summary, TREM2 is an important link between the pathogenesis of PD and inflammation. Our study provides a new view for the mechanism of TREM2 in PD and reveals TREM2 as a potential therapeutic target for PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.