The objective of this study is to evaluate the applicability of Communication, Ocean, and Meteorological Satellite (COMS) Geostationary Ocean Color Imager (GOCI) vegetation indices on a quantitative analysis. For evaluation, the vegetation indices such as RVI, NDVI and SAVI were extracted by using COMS GOCI and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) imageries. The 4,000 points using simple random sampling (SRS) method were randomly extracted from land areas except ocean to compare the vegetation indices from two images. The results of linear regression showed that the regression coefficients of RVI, NDVI, and SAVI between COMS GOCI and Terra MODIS were 0.66~0.82, 0.71~0.83, and 0.71~0.83, respectively. Especially, the regression coefficients of RVI (r=0.85), NDVI (r=0.91) and SAVI (r=0.91) were strongly related from September 2011 to January 2012. Thus, COMS GOCI can be substituted for particular periods and it needs to verify additionally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.