The coupled mechanical resonators (MRs) are the prominent candidate for studying macroscopic quantum coherence. The prerequisite for observing macroscopic mechanical coherence is cooling the MRs to their ground state. Here, a theoretical scheme is proposed for improving the cooling of two coupled MRs by imposing frequency modulation (FM) upon the system to suppress the Stokes heating processes. By the methods of covariance analysis and numerical simulations, it is demonstrated that the cooling of double MRs can be realized in both stable and unstable regions with high efficiency compared to the cooling without FM, even if in unresolved sideband (USB) regime. By modulating the parameters appropriately, the cooling efficiencies of two MRs can be flexibly adjusted.
We propose to generate and control stationary one-way steering with strong entanglement between photon and magnon modes by the cooperative effect of coherent coupling and dissipative coupling. Due to the combination of two couplings, the system becomes a parity-time-like symmetric non-Hermitian system, and two exceptional points (EPs)-like appear in the real and imaginary parts of the eigenvalues. We demonstrate that the especially obvious quantum entanglement and perfect one-way steering can be obtained around two EPs-like. The continuous variable entanglement and steering produced by this cooperative effect show stronger robustness to environment temperature and system dissipation than that induced by nonlinearity. The one-way steering directivity can be controlled by the relative phase of cooperative dissipation and the frequency detuning of the magnon mode. Our work shows the controllability advantage of the open cavity magnonic system and may open up a platform for the generation of stationary one-way steering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.