Acute respiratory infections are widespread in vulnerable populations of all ages and are characterized by a variety of symptoms. The underlying infection can be caused by a multitude of microorganisms, including viruses and bacteria. Early detection of respiratory infections through rapid pathogen screening is vital in averting infectious respiratory disease epidemics. This study utilized a multiplex real-time PCR system to develop a three-tube reverse transcription-PCR (RT-PCR) assay, enabling simultaneously detect nine respiratory pathogens, including: influenza A and B, adenovirus, respiratory syncytial virus (RSV), Streptococcus pneumoniae, Legionella pneumophila, Haemophilus influenzae, Chlamydia pneumoniae, and Mycoplasma pneumoniae. This technique utilizes a one-step assay, with specifically designed TaqMan primer–probe sets combined in the same tube. This assay provided rapid and simplified detection of the nine prevalent pathogens, as well as increased sensitivity and reduced cross-contamination. This assay was evaluated using 25 related viral/bacterial strains as positive references, the other 25 irrelevant strains as negative controls, and clinical specimens from 179 patients. All positive strains were detected with no amplification of the non-target microorganism mixtures and the assay’s detection limits ranged between 250–500 copies/ml (1.25–2.5 copies/reaction). A total of 167 (93.3%) samples tested positive for at least one of the pathogens identified; 109 of these samples were from patients confirmed to have RSV infections. The diagnostic accuracy of our assay was further confirmed by matching results from classical direct immunofluorescence assay and nucleotide sequencing. These data demonstrate the innovative multiplex real-time PCR assay as a promising alternative to the current approaches used for early screening of acute respiratory infections.
The investigation of beta-delayed proton decay mode has become a powerful probe to study the proton-rich nuclei and their nuclear structure. To study exotic nuclei with extremely low purity produced by the Radioactive Ion Beam Line in Lanzhou, we perform an experiment of beta-delayed proton emission of 36,37 Ca under a high-intensity continuous-beam mode. Ions are implanted into a double-sided silicon strip detector, where the subsequent decays are correlated to the preceding implantations in time sequence. The energy spectra of delayed protons from 36,37 Ca𝛽 decay, half-lives and decay branching ratios are measured. The experimental results confirm the previous literature data and some improved results are obtained as well, demonstrating the feasibility of our detection approach and the reliability of our data analysis procedure. This allows for the development of more powerful detection arrays and further research on nuclei closer to proton-drip line on the basis of present work.
Purpose: To investigate the inhibitory effect of berberine treatment on enhancement of zeste of homolog 2 (Ezh2) expressions in KYSE450 human esophageal cancer cells.Methods: Transwell motility chambers were used to analyze cell migration and invasion. Bio-Rad protein assay was used for the determination of protein concentration. Chemiluminescence with ECL system was employed for the detection of protein bands as per the manufacturer’s protocol. Staining was carried out with Alexa-Fluor 647 mouse anti-BrdU antibody. Flow cytometry was performed after adding DAPI. Annexin-V/DAPI staining and flow cytometry were used for the quantification of apoptotic cell death. Total RNA was isolated from KYSE450 cells using an RNA isolation kit.Results: Berberine-induced inhibition of Ezh2 expression led to inhibition of cell proliferation by G1 phase cell cycle arrest and induced anti-invasive properties of KYSE450 cells in Boyden chamber assays. There was 92 % reduction in invasive tendency of KYSE450 cells following treatment with berberine. Histone methylation inhibitor, 3-deazaneoplanocin A (DZNep), also led to a similar effect on cell proliferation of KYSE450 cells. Berberine treatment also resulted in strong transcriptional reduction of the AXL receptor kinase. The results of qRT-PCR and FACS analyses showed significant inhibition of AXL mRNA and protein expression in KYSE450 carcinoma cells after treatment with berberine.Conclusion: Berberine may be an effective therapeutic agent in the treatment of esophageal carcinoma.Keywords: Berberine, Histone methylation inhibitor, Anti-invasive, Cell proliferation, Human Esophageal cancer
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.