In addition, for BEs, the target bases are limited to an editing window of at least three nucleotides (nt) away from the 5 0 end of the protospacer adjacent motif (PAM), and undesired base substitutions are common, especially when several Cs or As coexist in the editing window (Chen et al., 2019). Although CRISPR/Cas-mediated homologous recombination provides an alternative method for precise targeted gene replacement or gene insertion in plants, it is limited by the low efficiency (Miki et al., 2018). Most recently, a ''search-and-replace'' genome editing technology called prime editing was developed in human cells, which can mediate all 12 possible base-to-base conversions using a reverse transcriptase (RT) paired with CRISPR-Cas9 nickase (Cas9n) (H840A) and a prime editing guide RNA (pegRNA), without DSBs or donor DNA (Anzalone et al., 2019).
Base editors that do not require double-stranded DNA cleavage or homology-directed repair enable higher efficiency and cleaner substitution of targeted single nucleotides in genomic DNA than conventional approaches. However, their broad applications are limited within the editing window of several base pairs from the canonical NGG protospacer adjacent motif (PAM) sequence. In this study, we fused the D10A nickase of several
Streptococcus pyogenes
Cas9 (SpCas9) variants with
Petromyzon marinus
cytidine deaminase 1 (PmCDA1) and uracil DNA glycosylase inhibitor (UGI) and developed two new effective PmCDA1-based cytosine base editors (pBEs), SpCas9 nickase (SpCas9n)-pBE and VQR nickase (VQRn)-pBE, which expanded the scope of genome targeting for cytosine-to-thymine (C-to-T) substitutions in rice. Four of six and 12 of 18 target sites selected randomly in SpCas9n-pBE and VQRn-pBE, respectively were base edited with frequencies of 4–90% in T
0
plants. The effective deaminase window typically spanned positions 1–7 within the protospacer and the single target C showed the maximum C-to-T frequency at or near position 3, counting the end distal to PAM as position 1. In addition, the modified single guide RNA (sgRNA) improved the base editing efficiencies of VQRn-pBE with 1.3- to 7.6-fold increases compared with the native sgRNA, and targets that could not be mutated using the native sgRNA were edited successfully using the modified sgRNA. These newly developed base editors can be used to realize C-to-T substitutions and may become powerful tools for both basic scientific research and crop breeding in rice.
The development of CRISPR/Cas9-mediated base editing has made genomic modification more efficient. However, selection of genetically modified cells from millions of treated cells, especially plant cells, is still challenging. In this study, an efficient surrogate reporter system based on a defective hygromycin resistance gene was established in rice to enrich base-edited cells. After step-by-step optimization, the Discriminated sgRNAs-based SurroGate system (DisSUGs) was established by artificially differentiating the editing abilities of a wild-type single guide RNA (sgRNA) targeting the surrogate reporter gene and an enhanced sgRNA targeting endogenous sites. The DisSUGs enhanced the efficiency of screening base-edited cells by 3-to 5-fold for a PmCDA1-based cytosine-to-tyrosine base editor (PCBE), and 2.5-to 6.5-fold for an adenine base editor (ABE) at endogenous targets. These targets showed editing efficiencies of <25% in the conventional systems. The DisSUGs greatly enhanced the frequency of homozygous substitutions and expanded the activity window slightly for both a PCBE and an ABE. Analyses of the total number of single-nucleotide variants from whole-genome sequencing revealed that, compared with the no-enrichment PCBE strategy, the DisSUGs did not alter the frequency of genome-wide sgRNA-independent off-target mutations, but slightly increased the frequency of target-dependent off-target mutations. Collectively, the DisSUGs developed in this study greatly enhances the efficiency of screening plant base-edited cells and will be a useful system in future applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.