Soil bacteria that also form mutualistic symbioses in plants encounter two major levels of selection. One occurs during adaptation to and survival in soil, and the other occurs in concert with host plant speciation and adaptation. Actinobacteria from the genus Frankia are facultative symbionts that form N 2 -fixing root nodules on diverse and globally distributed angiosperms in the "actinorhizal" symbioses. Three closely related clades of Frankia sp. strains are recognized; members of each clade infect a subset of plants from among eight angiosperm families. We sequenced the genomes from three strains; their sizes varied from 5.43 Mbp for a narrow host range strain (Frankia sp. strain HFPCcI3) to 7.50 Mbp for a medium host range strain (Frankia alni strain ACN14a) to 9.04 Mbp for a broad host range strain (Frankia sp. strain EAN1pec.) This size divergence is the largest yet reported for such closely related soil bacteria (97.8%-98
The ability to quantitate and visualize microRNAs (miRNAs) in situ in single cells would greatly facilitate the elucidation of miRNA-mediated regulatory circuits and their disease associations. A toehold-initiated strand-displacement process was used to initiate rolling circle amplification of specific miRNAs, an approach that achieves both stringent recognition and in situ amplification of the target miRNA. This assay, termed toehold-initiated rolling circle amplification (TIRCA), can be utilized to identify miRNAs at physiological temperature with high specificity and to visualize individual miRNAs in situ in single cells within 3 h. TIRCA is a competitive candidate technique for in situ miRNA imaging and may help us to understand the role of miRNAs in cellular processes and human diseases in more detail.
The major histocompatibility complex (MHC) class II transactivator (CIITA) is the master regulatory factor required for appropriate expression of class II MHC genes. Understanding the expression of CIITA is key to understanding the regulation of class II MHC genes. This report describes the independent regulation of two distinct CIITA promoters by cytokines with opposing functions, gamma interferon (IFN-gamma) and transforming growth factor beta (TGF-beta). A functional analysis of deletion mutations of the upstream promoter (promoter III) identified an IFN-gamma-responsive region located approximately 5 kb from the transcriptional start site. An in vivo DNase I hypersensitivity analysis detected a hypersensitive site in this area which supports the relevance of this region. When the downstream promoter (promoter IV) was studied by in vivo genomic footprinting, IFN-gamma-induced changes at putative binding sites for STAT1, interferon regulatory factor 1 (IRF-1), and E-box proteins were seen. Gel shift and supershift analyses for IRF-1 confirmed the in vivo footprint results. The role of the IFN-gamma-inducible transcription factor STAT1 was examined functionally. Although both promoters were controlled by STAT1, promoter-specific regulation was exhibited. The IFN-gamma response of promoter III was completely dependent on STAT1 and not IRF-1, while promoter IV was partially activated by IRF-1 in the total absence of STAT1 expression. While both promoters were affected by TGF-beta, activation of promoter III by IFN-gamma was more severely diminished by TGF-beta treatment. The differential control of CIITA promoters by TGF-beta, IRF-1, and STAT1 may be important in refining regulation of class II MHC genes in different cell types and under different stimulatory conditions.
BackgroundEpimedium sagittatum (Sieb. Et Zucc.) Maxim, a traditional Chinese medicinal plant species, has been used extensively as genuine medicinal materials. Certain Epimedium species are endangered due to commercial overexploition, while sustainable application studies, conservation genetics, systematics, and marker-assisted selection (MAS) of Epimedium is less-studied due to the lack of molecular markers. Here, we report a set of expressed sequence tags (ESTs) and simple sequence repeats (SSRs) identified in these ESTs for E. sagittatum.ResultscDNAs of E. sagittatum are sequenced using 454 GS-FLX pyrosequencing technology. The raw reads are cleaned and assembled into a total of 76,459 consensus sequences comprising of 17,231 contigs and 59,228 singlets. About 38.5% (29,466) of the consensus sequences significantly match to the non-redundant protein database (E-value < 1e-10), 22,295 of which are further annotated using Gene Ontology (GO) terms. A total of 2,810 EST-SSRs is identified from the Epimedium EST dataset. Trinucleotide SSR is the dominant repeat type (55.2%) followed by dinucleotide (30.4%), tetranuleotide (7.3%), hexanucleotide (4.9%), and pentanucleotide (2.2%) SSR. The dominant repeat motif is AAG/CTT (23.6%) followed by AG/CT (19.3%), ACC/GGT (11.1%), AT/AT (7.5%), and AAC/GTT (5.9%). Thirty-two SSR-ESTs are randomly selected and primer pairs are synthesized for testing the transferability across 52 Epimedium species. Eighteen primer pairs (85.7%) could be successfully transferred to Epimedium species and sixteen of those show high genetic diversity with 0.35 of observed heterozygosity (Ho) and 0.65 of expected heterozygosity (He) and high number of alleles per locus (11.9).ConclusionA large EST dataset with a total of 76,459 consensus sequences is generated, aiming to provide sequence information for deciphering secondary metabolism, especially for flavonoid pathway in Epimedium. A total of 2,810 EST-SSRs is identified from EST dataset and ~1580 EST-SSR markers are transferable. E. sagittatum EST-SSR transferability to the major Epimedium germplasm is up to 85.7%. Therefore, this EST dataset and EST-SSRs will be a powerful resource for further studies such as taxonomy, molecular breeding, genetics, genomics, and secondary metabolism in Epimedium species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.