Electrochromic devices have attracted considerable interest for smart windows. However, current development suffers from the requirement of the external power sources and rigid ITO substrate, which not only causes additional energy consumption but also limits their applications in flexible devices. Inspired by galvanic cell, we demonstrate a self-powered flexible electrochromic device by integrating Ag/W 18 O 49 nanowire film with the Al sheet. The Ag nanowire film first acted as the electrode to replace the ITO substrate, then coupled with the Al sheet to induce an open-circuit voltage of ∼0.83 V, which is high enough to drive the coloration of W 18 O 49 nanowires. Remarkably, the flexible self-powered electrochromic device only expends ∼6.8 mg/cm 2 of the Al sheet after 450 electrochromic switching cycles and the size can be easily expanded with an area of 20 × 20 cm 2 , offering significant potential applications for the next generation of flexible electrochromic smart window.
Assembling various nanowires together, enabling the assemblies with tailored optical, electrical, and multifunctional properties, represents a promising technology for next generation multifunctional electronics. Here we demonstrate a novel multicolor electrochromic device by coassembling W 18 O 49 and V 2 O 5 nanowires using solution-based Langmuir−Blodgett technique. The transparent W 18 O 49 nanowire film became orange with the increasing addition of V 2 O 5 nanowires and the film underwent a dynamic color change (orange, green, and gray) on application of different electrochemical biases of 2, 0, and −0.5 V (vs Ag/AgCl). Both the transmittance and color of the device can be easily controlled by manipulating the layers of coassembled nanowires and the ratios between the two nanowires. On the basis of this approach, different patterns can be easily fabricated with the addition of corresponding masks, and the solid electrochromic device is assembled, suggesting its significant potentials in smart windows and multicolor electrochromic displays.
Smart window is an attractive option for efficient heat management to minimize energy consumption and improve indoor living comfort owing to their optical properties of adjusting sunlight. To effectively improve the sunlight modulation and heat management capability of smart windows, here, we propose a co-assembly strategy to fabricate the electrochromic and thermochromic smart windows with tunable components and ordered structures for the dynamic regulation of solar radiation. Firstly, to enhance both illumination and cooling efficiency in electrochromic windows, the aspect ratio and mixed type of Au nanorods are tuned to selectively absorb the near-infrared wavelength range of 760 to 1360 nm. Furthermore, when assembled with electrochromic W18O49 nanowires in the colored state, the Au nanorods exhibit a synergistic effect, resulting in a 90% reduction of near-infrared light and a corresponding 5 °C cooling effect under 1-sun irradiation. Secondly, to extend the fixed response temperature value to a wider range of 30–50 °C in thermochromic windows, the doping amount and mixed type of W-VO2 nanowires are carefully regulated. Last but not the least, the ordered assembly structure of the nanowires can greatly reduce the level of haze and enhance visibility in the windows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.