FLPs featuring aluminum-phosphane interactions, spring-loaded by a rigid biphenylene linker, have been accessed through a route where trimethyltin units at phosphane-functionalized organic backbones are exchanged by an AlCl2 moiety. Upon...
In our daily life, some of the most valuable commodities are preprogrammed or preassembled by a manufacturer; the end-user puts together the final product and gathers properties or function as desired. Here, we present a chemical approach to preassembled materials, namely supramolecular polymer networks (SPNs), which wait for an operator’s command to organize autonomously. In this prototypical system, the controlled disassembly of a metastable interlocked molecule (rotaxane) liberates an active species to the medium. This species crosslinks a ring-containing polymer and assembles with a reporting macrocycle to produce colorful SPNs. We demonstrate that by using identical preprogrammed systems, one can access multiple supramolecular polymer networks with different degrees of fluidity (μ* = 2.5 to 624 Pa s-1) and color, all as desired by the end-user.
FLPs featuring aluminum-phosphane interactions, spring-loaded by a rigid biphenylene linker, have been accessed through a route where trimethyltin units at phosphane-functionalized organic backbones are exchanged by an AlCl2 moiety. The latter is saturated through the interaction with the phosphane donors sufficiently to allow for the isolation of the compounds in monomeric form but upon contact with substrates like CO2 these are readily bound by the Al/P site with release of strain. The system could also be utilized for a unique reactivity, namely the activation of allene, which has not been described in FLP chemistry so far.
FLPs featuring aluminum-phosphane interactions, spring-loaded by a rigid biphenylene linker, have been accessed through a route where trimethyltin units at phosphane-functionalized organic backbones are exchanged by an AlCl2 moiety. The latter is saturated through the interaction with the phosphane donors sufficiently to allow for the isolation of the compounds in monomeric form but upon contact with substrates like CO2 these are readily bound by the Al/P site with release of strain. The system could also be utilized for a unique reactivity, namely the activation of allene, which has not been described in FLP chemistry so far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.