Purpose – Discrete control of robot manipulators with uncertain model is the purpose of this paper. Design/methodology/approach – The proposed control design is model-free by employing an adaptive fuzzy estimator in the controller for the estimation of uncertainty as unknown function. An adaptive mechanism is proposed in order to overcome uncertainties. Parameters of the fuzzy estimator are adapted to minimize the estimation error using a gradient descent algorithm. Findings – The proposed model-free discrete control is robust against all uncertainties associated with the model of robotic system including the robot manipulator and actuators, and external disturbances. Stability analysis verifies the proposed control approach. Simulation results show its efficiency in the tracking control. Originality/value – A novel model-free discrete control approach for electrically driven robot manipulators is proposed. An adaptive fuzzy estimator is used in the controller to overcome uncertainties. The parameters of the estimator are regulated by a gradient descent algorithm. The most gradient descent algorithms have used a known cost function based on the tracking error for adaptation whereas the proposed gradient descent algorithm uses a cost function based on the uncertainty estimation error. Then, the uncertainty estimation error is calculated from the joint position error and its derivative using the closed-loop system.
Purpose -The purpose of this paper is to design a discrete indirect adaptive fuzzy controller for a robotic manipulator. This paper addresses how to overcome the approximation error of the fuzzy system and uncertainties for asymptotic tracking control of robotic manipulators. The uncertainties include parametric uncertainty, un-modeled dynamics, discretization error and external disturbances. Design/methodology/approach -The proposed controller is model-free and voltage-based in the form of discrete-time Mamdani fuzzy controller. The parameters of fuzzy controller are adaptively tuned for asymptotic tracking of a desired trajectory. A robust control term is used to compensate the approximation error of the fuzzy system. An adaptive mechanism is derived based on the stability analysis. Findings -The proposed model-free discrete control is robust against all uncertainties associated with the robot manipulator and actuators. The approximation error of the fuzzy system is well compensated to achieve asymptotic tracking of the desired trajectories. Stability analysis and simulation results show its efficiency in the tracking control. Originality/value -A novel discrete indirect adaptive fuzzy controller is designed for electrically driven robot manipulators using the voltage control strategy. The novelty of this paper is compensating the approximation error of the fuzzy system and discretizing error for asymptotic tracking of the desired trajectory.
This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimation error using a gradient descent algorithm. The proposed discrete control is robust against all uncertainties as verified by stability analysis. The proposed robust control law is simulated on a SCARA robot driven by permanent magnet dc motors. Simulation results show the effectiveness of the control approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.