A multi-wavelength Brillouin/Erbium-Ytterbium doped fiber laser which operates in the 1535 nm region is proposed and demonstrated. The system employs both linear and nonlinear gain from a 4 meter Erbium-Ytterbium doped fiber and an 8 km single mode fiber respectively to generate an optical comb with a spacing of approximately 0.084 nm. A stable output laser comb of more than 22 lines was obtained with a Brillouin pump of 2 dBm and a 1058 nm pump of 175 mW. A maximum peak power of -4.2 dBm was obtained at a wavelength of 1535.16 nm at these pump power settings while the spectral linewidth of the laser is approximately 8 Hz.
Abstract-Wide-band hybrid amplifier is theoretically proposed using a series configuration of Thulium-doped fiber amplifier (TDFA) and fiber Raman amplifier (FRA), which using the similar type of pump laser. The operating wavelength of this amplifier covers the bandwidth of entire short wavelength band (S-band) region by combining the gain spectrum of TDFA and FRA. The theoretical gain varies from 20 to 24 dB within a wavelength region from 1460 to 1525 nm and which is in a good agreement with the experimental result. The development of reliable high-power diode lasers in the 1420 nm wavelength range will make this type of wide-band hybrid amplifier an interesting candidate for S-band optical telecommunication systems.
This paper presents short wavelength operation of tunable thulium-doped mode-locked lasers with sweep ranges of 1702 to 1764 nm and 1788 to 1831 nm. This operation is realized by a combination of the partial amplified spontaneous emission suppression method, the bidirectional pumping mechanism and the nonlinear polarization rotation (NPR) technique. Lasing at emission bands lower than the 1800 nm wavelength in thulium-doped fiber lasers is achieved using mode confinement loss in a specially designed photonic crystal fiber (PCF). The enlargement of the first outer ring air holes around the core region of the PCF attenuates emissions above the cut-off wavelength and dominates the active region. This amplified spontaneous emission (ASE) suppression using our presented PCF is applied to a mode-locked laser cavity and is demonstrated to be a simple and compact solution to widely tunable all-fiber lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.