Nonlinear kernel methods have been widely used to deal with nonlinear problems in latent variable methods. However, in the presence of structured noise, these methods have reduced efficacy. We have previously introduced constrained latent variable methods that make use of any available additional knowledge about the structured noise. These methods improve performance by introducing additional constraints into the algorithm. In this paper, we build upon our previous work and introduce hard-constrained and soft-constrained nonlinear partial least squares methods using nonlinear kernels. The addition of nonlinear kernels reduces the effects of structured noise in nonlinear spaces and improves the regression performance between the input and response variables. Copyright
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.