The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5–20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson’s disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations.
Two obsessive-compulsive disorder (OCD) genome-wide association studies (GWASs) have been published by independent OCD consortia, the International Obsessive-Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) and the OCD Collaborative Genetics Association Study (OCGAS), but many of the top-ranked signals were supported in only one study. We therefore conducted a meta-analysis from the two consortia, investigating a total of 2688 individuals of European ancestry with OCD and 7037 genomically matched controls. No single-nucleotide polymorphisms (SNPs) reached genome-wide significance. However, in comparison with the two individual GWASs, the distribution of P-values shifted toward significance. The top haplotypic blocks were tagged with rs4733767 (P=7.1 × 10; odds ratio (OR)=1.21; confidence interval (CI): 1.12-1.31, CASC8/CASC11), rs1030757 (P=1.1 × 10; OR=1.18; CI: 1.10-1.26, GRID2) and rs12504244 (P=1.6 × 10; OR=1.18; CI: 1.11-1.27, KIT). Variants located in or near the genes ASB13, RSPO4, DLGAP1, PTPRD, GRIK2, FAIM2 and CDH20, identified in linkage peaks and the original GWASs, were among the top signals. Polygenic risk scores for each individual study predicted case-control status in the other by explaining 0.9% (P=0.003) and 0.3% (P=0.0009) of the phenotypic variance in OCGAS and the European IOCDF-GC target samples, respectively. The common SNP heritability in the combined OCGAS and IOCDF-GC sample was estimated to be 0.28 (s.e.=0.04). Strikingly, ∼65% of the SNP-based heritability in the OCGAS sample was accounted for by SNPs with minor allele frequencies of ⩾40%. This joint analysis constituting the largest single OCD genome-wide study to date represents a major integrative step in elucidating the genetic causes of OCD.
The involvement of the microbiome in health and disease is well established. Microbiome genome-wide association studies (mGWAS) are used to elucidate the interaction of host genetic variation with the microbiome. The emergence of this relatively new field has been facilitated by the advent of next generation sequencing technologies that enable the investigation of the complex interaction between host genetics and microbial communities. In this paper, we review recent studies investigating host–microbiome interactions using mGWAS. Additionally, we highlight the marked disparity in the sampling population of mGWAS carried out to date and draw attention to the critical need for inclusion of diverse populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.