In this study, we used one-pot A 2 + B 3 polymerizations to synthesize two aliphatic + alicyclic polymer dots (PDs) having non-conjugated hyperbranched structures, employing two types of dianhydrides as the A 2 components, possessing bridged bicyclic alkene (PD-BT) and non-alkene (PD-ET) units, and Jeffamine T403 polyetheramine (T403) as the B 3 components. We prepared PD-ET from commercially available ethylenediaminetetraacetic dianhydride (EDTAD, A 2 ) and T403 (B 3 ) and PD-BT from bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA, A 2 ) and T403 (B 3 ). These two types of PDs possessed non-conjugated hyperbranched poly(amic acid) structures with terminal amino functional groups. PD-BT and PD-ET exhibited non-conventional fluorescence with emissions at 435 and 438 nm, respectively, and quantum yields of 12.8 and 14.0%, respectively. The fluorescence intensity of PD-ET was influenced by the pH, but PD-BT was less affected because of its rigid aliphatic bridged bicyclic structure. In aqueous solutions, the sizes of the PD-BT and PD-ET nanoparticles were 3−5 nm, and their net charges can be adjusted by varying the pH. These PDs were non-cytotoxic toward human MCF-7 breast cancer cells and human keratinocyte HaCaT cells at concentrations of 50 μg mL −1 for PD-BT and 500 μg mL −1 for PD-ET. Confocal microscopic bioimaging revealed that the PDs were located within the cells after treatment for 6 h. These PDs were easy to prepare, highly water-soluble, and possessed a large number of peripheral functional groups for further modification. Combined with their non-conventional fluorescence, they appear to have potential uses in bioimaging and as druglabeling carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.