We prove that Schur polynomials in Chern forms of Nakano and dual Nakano positive vector bundles are positive as differential forms. Moreover, modulo a statement about the positivity of a "double mixed discriminant" of linear operators on matrices, which preserve the cone of positive definite matrices, we establish that Schur polynomials in Chern forms of Griffiths positive vector bundles are weakly-positive as differential forms. This provides differential-geometric versions of Fulton-Lazarsfeld inequalities for ample vector bundles.An interpretation of positivity conditions for vector bundles through operator theory is in the core of our approach. Another important step in our proof is to establish a certain pushforward identity for characteristic forms, refining the determinantal formula of Kempf-Laksov for homolorphic vector bundles on the level of differential forms. In the same vein, we establish a local version of Jacobi-Trudi identity.Then we study the inverse problem and show that already for vector bundles over complex surfaces, one cannot characterize Griffiths positivity (and even ampleness) through the positivity of Schur polynomials, even if one takes into consideration all quotients of a vector bundle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.