To date, research on the disturbed experience of body size in Anorexia Nervosa (AN) mainly focused on the conscious perceptual level (i.e. body image). Here we investigated whether these disturbances extend to body schema: an unconscious, action-related representation of the body. AN patients (n = 19) and healthy controls (HC; n = 20) were compared on body-scaled action. Participants walked through door-like openings varying in width while performing a diversion task. AN patients and HC differed in the largest opening width for which they started rotating their shoulders to fit through. AN patients started rotating for openings 40% wider than their own shoulders, while HC started rotating for apertures only 25% wider than their shoulders. The results imply abnormalities in AN even at the level of the unconscious, action oriented body schema. Body representation disturbances in AN are thus more pervasive than previously assumed: They do not only affect (conscious) cognition and perception, but (unconscious) actions as well.
In saccade sequences without visual feedback endpoint errors pose a problem for subsequent saccades. Accurate error compensation has previously been demonstrated in double step saccades (DSS) and is thought to rely on a copy of the saccade motor vector. However, these studies typically use fixed target vectors on each trial, calling into question the generalizability of the findings due to the high stimulus predictability. We present a random walk DSS paradigm (random target vector amplitudes and directions) to provide a more complete, realistic and generalizable description of error compensation in saccade sequences. We regressed the vector between the endpoint of the second saccade and the endpoint of a hypothetical second saccade that does not take first saccade error into account on the ideal compensation vector. This provides a direct and complete estimation of error compensation in DSS. We observed error compensation with varying stimulus displays that was comparable to previous findings. We also employed this paradigm to extend experiments that showed accurate compensation for systematic undershoots after specific-vector saccade adaptation. Utilizing the random walk paradigm for saccade adaptation by Rolfs et al. (2010) together with our random walk DSS paradigm we now also demonstrate transfer of adaptation from reactive to memory guided saccades for global saccade adaptation. We developed a new, generalizable DSS paradigm with unpredictable stimuli and successfully employed it to verify, replicate and extend previous findings, demonstrating that endpoint errors are compensated for saccades in all directions and variable amplitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.