Epithelial cells (ECs) lining the secretory cavities of Citrus peel have been hypothesized to be responsible for the synthesis of essential oil, but direct evidence for such a role is currently sparse. We used laser-capture microdissection and pressure catapulting to isolate ECs and parenchyma cells (as controls not synthesizing oil) from the peel of young grapefruit (Citrus × paradisi ‘Duncan’), isolated RNA, and evaluated transcript patterns based on oligonucleotide microarrays. A Gene Ontology analysis of these data sets indicated an enrichment of genes involved in the biosynthesis of volatile terpenoids and nonvolatile phenylpropanoids in ECs (when compared with parenchyma cells), thus indicating a significant metabolic specialization in this cell type. The gene expression patterns in ECs were consistent with the accumulation of the major essential oil constituents (monoterpenes, prenylated coumarins, and polymethoxylated flavonoids). Morphometric analyses demonstrated that secretory cavities are formed early during fruit development, whereas the expansion of cavities, and thus oil accumulation, correlates with later stages of fruit expansion. Our studies have laid the methodological and experimental groundwork for a vastly improved knowledge of the as yet poorly understood processes controlling essential oil biosynthesis in Citrus peel.
The repeated removal of flower, fruit, or vegetative buds is a common treatment to simulate sink limitation. These experiments usually lead to the accumulation of specific proteins, which are degraded during later stages of seed development, and have thus been designated as vegetative storage proteins. We used oligonucleotide microarrays to assess global effects of sink removal on gene expression patterns in soybean leaves and found an induction of the transcript levels of hundreds of genes with putative roles in the responses to biotic and abiotic stresses. In addition, these data sets indicated potential changes in amino acid and phenylpropanoid metabolism. As a response to sink removal we detected an induced accumulation of γ-aminobutyric acid, while proteinogenic amino acid levels decreased. We also observed a shift in phenylpropanoid metabolism with an increase in isoflavone levels, concomitant with a decrease in flavones and flavonols. Taken together, we provide evidence that sink removal leads to an up-regulation of stress responses in distant leaves, which needs to be considered as an unintended consequence of this experimental treatment.
Many plant natural products are synthesized in specialized cells and tissues. To learn more about metabolism in these cells, they have to be studied in isolation. Here, we describe a protocol for the isolation of epithelial cells that surround secretory cavities in Citrus fruit peel. Cells isolated using laser microdissection are suitable for RNA isolation and downstream transcriptome analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.