We define a distinguished "ground state" or "vacuum" for a free scalar quantum field in a globally hyperbolic region of an arbitrarily curved spacetime. Our prescription is motivated by the recent construction [1, 2] of a quantum field theory on a background causal set using only knowledge of the retarded Green's function. We generalize that construction to continuum spacetimes and find that it yields a distinguished vacuum or ground state for a non-interacting, massive or massless scalar field. This state is defined for all compact regions and for many noncompact ones. In a static spacetime we find that our vacuum coincides with the usual ground state. We determine it also for a radiation-filled, spatially homogeneous and isotropic cosmos, and show that the super-horizon correlations are approximately the same as those of a thermal state. Finally, we illustrate the inherent non-locality of our prescription with the example of a spacetime which sandwiches a region with curvature in-between flat initial and final regions.
We introduce a family of generalized d'Alembertian operators in D-dimensionalMinkowski spacetimes M D which are manifestly Lorentz-invariant, retarded, and non-local, the extent of the nonlocality being governed by a single parameter ρ. The prototypes of these operators arose in earlier work as averages of matrix operators meant to describe the propagation of a scalar field in a causal set. We generalize the original definitions to produce an infinite family of "Generalized Causet Box (GCB) operators" parametrized by certain coefficients {a, b n }, and we derive the conditions on the latter needed for the usual d'Alembertian to be recovered in the infrared limit. The continuum average of a GCB operator is an integral operator in M D , and it is these continuum operators that we mainly study. To that end, we compute their action on plane waves, or equivalently their Fourier transforms g(p) [p being the momentum-vector]. For timelike p, g(p) has an imaginary part whose sign depends on whether p is past or future-directed. For small p, g(p) is necessarily proportional to p · p, but for large p it becomes constant, raising the possibility of a genuinely Lorentzian perturbative regulator for quantum field theory in M D . We also address the question of whether or not the evolution defined by the GCB operators is stable, finding evidence that the original 4D causal set d'Alembertian is unstable, while its 2D counterpart is stable.
We investigate a recent proposal for a distinguished vacuum state of a free scalar quantum field in an arbitrarily curved spacetime, known as the Sorkin-Johnston (SJ) vacuum, by applying it to de Sitter space. We derive the associated two-point functions on both the global and Poincaré (cosmological) patches in general d + 1 dimensions. In all cases where it is defined, the SJ vacuum belongs to the family of de Sitter invariant α-vacua. We obtain different states depending on the spacetime dimension, mass of the scalar field, and whether the state is evaluated on the global or Poincaré patch. We find that the SJ vacuum agrees with the Euclidean/Bunch-Davies state for heavy ("principal series") fields on the global patch in even spacetime dimensions. We also compute the SJ vacuum on a causal set corresponding to a causal diamond in 1 + 1 dimensional de Sitter space. Our simulations show that the mean of the SJ two-point function on the causal set agrees well with its expected continuum counterpart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.