Abstract. Controlling a biped robot with a high degree of freedom to achieve stable and straight movement patterns is a complex problem. With growing computational power of computer hardware, high resolution real time simulation of such robot models has become more and more applicable. This paper presents a novel approach to generate bipedal gait for humanoid locomotion. This approach is based on modified Truncated Fourier Series (TFS) for generating angular trajectories. It is also the first time that Particle Swarm Optimization (PSO) is used to find the best angular trajectory and optimize TFS. This method has been implemented on Simulated NAO robot in Robocup 3D soccer simulation environment (rcssserver3d). To overcome inherent noise of the simulator we applied a Resampling algorithm which could lead the robustness in nondeterministic environments. Experimental results show that PSO optimizes TFS faster and better than GA to generate straighter and faster humanoid locomotion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.