In this article, polycaprolactone (PCL) nanofibres were processed by electrospinning using a 3:1 ratio of tetrahydrofuran to methanol as solvent. The solvent choice was motivated by the possibility of greener alternatives to the halogenated compounds most often used for electrospinning. The morphologies and fiber diameters resulting from the electrospinning of PCL solutions at room temperature under various conditions are presented in this article. The material morphology was characterized using scanning electron microscopy and a measuring software. The process was optimized for smaller fibers with a narrower fiber diameter distribution by studying parameters such as polymer concentration, applied voltage, the tip to collector distance (TCD), and the solution flow rate. A comparison analysis was used to separate the current resulting from whipping and that resulting from spraying at high voltage. The fiber diameters obtained under various processing conditions were effectively modeled using the terminal jet theory, referenced in several works. Process parameters were optimal for a 20% PCL concentration spun at a flow rate of 0.5 mL/h, with a TCD of 15 cm and an applied voltage of 8 kV. Fibers spun under these conditions displayed diameters of 546 ± 173 nm. POLYM. ENG. SCI., 55:2576–2582, 2015. © 2015 Society of Plastics Engineers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.