BackgroundTuberculosis (TB) continues to spread in South African prisons in particular, as prisons are over-capacitated and have poor ventilation. The awaiting trial detainees are not screened on admission and are at high risk of getting infected with TB.ResultsWe propose a compartmental model to describe the population dynamics of TB disease in prisons. Our model considers the inflow of susceptible, exposed and TB infectives into the prison population. Removal of individuals out of the prison population can be either by death or by being released from prison, as compared to a general population in which removal is only by death. We describe conditions, including non-inflow of infectives into the prison, which will ensure that TB can be eradicated from the prison population. The model is calibrated for the South African prison system, by using data in existing literature. The model can be used to make quantitative projections of TB prevalence and to measure the effect of interventions. Illustrative simulations in this regard are presented. The model can be used for other prison populations too, if data is available to calculate the model parameters.ConclusionsVarious simulations generated with our model serve to illustrate how it can be utilized in making future projections of the levels of prevalence of TB, and to quantify the effect of interventions such as screening, treatment or reduction of transmission parameter values through improved living conditions for inmates. This makes it particularly useful as there are various targets set by the World Health Organization and by governments, for reduction of TB prevalence and ultimately its eradication. Towards eradication of TB from a prison system, the theorem on global stability of the disease-free state is a useful indicator.
We propose a stochastic compartmental model for the population dynamics of tuberculosis. The model is applicable to crowded environments such as for people in high density camps or in prisons. We start off with a known ordinary differential equation model, and we impose stochastic perturbation. We prove the existence and uniqueness of positive solutions of a stochastic model. We introduce an invariant generalizing the basic reproduction number and prove the stability of the disease-free equilibrium when it is below unity or slightly higher than unity and the perturbation is small. Our main theorem implies that the stochastic perturbation enhances stability of the disease-free equilibrium of the underlying deterministic model. Finally, we perform some simulations to illustrate the analytical findings and the utility of the model.
<abstract><p>COVID-19 has become a serious pandemic affecting many countries around the world since it was discovered in 2019. In this research, we present a compartmental model in ordinary differential equations for COVID-19 with vaccination, inflow of infected and a generalized contact rate. Existence of a unique global positive solution of the model is proved, followed by stability analysis of the equilibrium points. A control problem is presented, with vaccination as well as reduction of the contact rate by way of education, law enforcement or lockdown. In the last section, we use numerical simulations with data applicable to South Africa, for supporting our theoretical results. The model and application illustrate the interesting manner in which a diseased population can be perturbed from within itself.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.