Paramagnetic particles have the unique ability to reversibly form magnetic chains. We have taken advantage of this property by permanently linking the chains with three linking chemistries to create flexible chains whose behavior changes with the application of a magnetic field. We study the behavior of these chains in a rotating magnetic field and model them as elastic rods. Rigid chains rotate as a solid body while flexible chains deform under the influence of magnetic, viscous, and elastic stresses. We find that the shapes chains assume in rotating magnetic fields confirm the chain flexibility determined from previous micromechanics measurements.
Paramagnetic colloidal particles aggregate into linear chains under an applied external magnetic field. These particles can be chemically linked to create chains that can be magnetically actuated to manipulate microscopic fluid flow. The flexibility of the chain can be adjusted by varying the length of the linker molecule. In this paper, we describe the use of a suspension of linked paramagnetic chains in a rotating magnetic field to perform microscale mixing. The effect of chain rotation and flexibility on the diffusion of molecules is studied by observing the mixing of an acid and base in a microchannel. We show that, as the chain rotation frequency increases, there is marked increase in the effective mixing between fluid streams; however, a maximum frequency exists and above this frequency the chains are no longer effective in mixing. More flexible chains are more effective at mixing over a larger range of frequencies.
Foam mobility control and novel oil displacement mechanisms were observed in a microfluidic device representing a porous media system with layered permeability. Foam was pre-generated using a flow-focusing microfluidic device and injected into an oil-wet, oil-saturated 2-D PDMS microfluidic device. The device is designed with a central fracture flanked by high-permeability and low-permeability zones stratified in the direction of injection. A 1 : 1, 1% blend of alpha olefin sulfonate 14-16 (AOS) and lauryl betaine (LB) surfactants produced stable foam in the presence of paraffin oil. The oil saturation and pressure drop across the microfluidic device were measured as a function of time and the injected pore volume, indicating an increase in apparent viscosity for foam with an accompanying decrease in oil saturation. In contrast to the control experiments, foam was shown to more effectively mobilize trapped oil by increasing the flow resistance in the fracture and high-permeability zones and by diverting the surfactant solution into adjacent low-permeability zones. The foam was observed to separate into gas-rich and aqueous-rich phases depending on matrix permeability, suggesting that it is not appropriate to treat foam as a homogeneous dispersion of gas and liquid.
Magnetorheological particles, permanently linked into chains, provide a magnetically actuated means to manipulate microscopic fluid flow. Paramagnetic colloidal particles form reversible chains by acquiring dipole moments in the presence of an external magnetic field. By chemically connecting paramagnetic colloidal particles, flexible magnetoresponsive chains can be created. We link the paramagnetic microspheres using streptavidin-biotin binding. Streptavidin coated microspheres are placed in a flow cell and a magnetic field is applied, causing the particles to form chains. Then a solution of polymeric linkers of bis-biotin-poly(ethylene glycol) molecules is added in the presence of the field. These linked chains remain responsive to a magnetic field; however, in the absence of an external magnetic field these chains bend and flex due to thermal motion. The chain flexibility is determined by the length of the spacer molecule between particles and is quantified by the flexural rigidity or bending stiffness. To understand the mechanical properties of the chains, we use a variety of optical trapping experiments to measure the flexural rigidity. Increasing the length of the poly(ethylene glycol) chain in the linker increases the flexibility of the chains.
We develop a method of estimating foam simulation parameters from laboratory experiments. Gas and surfactant solution are coinjected into sand packs at different experimental conditions in two systems. At steady state, saturation of the aqueous phase is shown to be relatively constant over a wide range of foam qualities. In order to obtain an accurate model fit at the transition foam quality, the difference between the foam model parameter fmdry and the transition water saturation S w t is identified and a method to precisely calculate S w t is developed. By superimposing contour plots of the transition foam quality and the foam apparent viscosity, one can estimate the reference mobility reduction factor (fmmob) and the critical water saturation (fmdry) using the STARS foam model. The parameter epdry, which regulates the abruptness of the foam dry-out effect, can be estimated by a transient (continuous gas injection) foam experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.