FOXE3 is a lens-specific transcription factor with a highly conserved forkhead domain previously implicated in congenital primary aphakia and anterior segment dysgenesis. Here, we identify new recessive FOXE3 mutations causative for microphthalmia, sclerocornea, primary aphakia, and glaucoma in two extended consanguineous families by SNP array genotyping followed by a candidate gene approach. Following an additional screen of 236 subjects with developmental eye anomalies, we report two further novel heterozygous mutations segregating in a dominant fashion in two different families. Although the dominant mutations were penetrant, they gave rise to highly variable phenotypes including iris and chorioretinal colobomas, Peters' anomaly, and isolated cataract (cerulean type and early onset adult nuclear and cortical cataract). Using in situ hybridization in human embryos, we demonstrate expression of FOXE3 restricted to lens tissue, predominantly in the anterior epithelium, suggesting that the extralenticular phenotypes caused by FOXE3 mutations are most likely to be secondary to abnormal lens formation. Our findings suggest that mutations in FOXE3 can give rise to a broad spectrum of eye anomalies, largely, but not exclusively related to lens development, and that both dominant and recessive inheritance patterns can be represented. We suggest including FOXE3 in the diagnostic genetic screening for these anomalies.
We present a family afflicted with a novel autosomal recessive disease characterized by progressive intellectual disability, motor dysfunction and multiple joint contractures. No pathology was found by cranial imaging, electromyography and muscle biopsy, but electron microscopy in leukocytes revealed large vacuoles containing flocculent material. We mapped the disease gene by SNP genome scan and linkage analysis to an ∼0.80 cM and 1 Mb region at 8p11.23 with a multipoint logarithm of odds (LOD) score of 12. By candidate gene approach, we identified a homozygous two-nucleotide insertion in ERLIN2, predicted to lead to the truncation of the protein by about 20%. The gene encodes endoplasmic reticulum (ER) lipid raft-associated protein 2 that mediates the ER-associated degradation of activated inositol 1,4,5-trisphosphate receptors and other substrates.
The authors present three patients from a consanguineous family afflicted with novel recessive myoclonic epilepsy characterized by very early onset and a steadily progressive course. The onset is in early infancy, and death occurs in the first decade. In addition to various types of myoclonic seizures, episodic phenomena such as dystonias, postictal enduring hemipareses, autonomic involvements, and periods of obtundation and lethargy were also observed. Developmental and neurological retardation, coupled with systemic infections, leads to a full deterioration. The authors designated the disease progressive myoclonic epilepsy with dystonia (PMED). A genome scan for the family and subsequent fine mapping localized the gene responsible for the disease to the most telomeric 6.73 mega base pairs at the p-terminus of chromosome 16, with a maximum multipoint logarithm-of-odds score of 7.83 and a maximum two-point score of 4.25. A candidate gene was analyzed for mutations in patients, but no mutation was found.
Mutations in the visual system homeobox 2 gene (VSX2, also known as CHX10), which encodes a retinal transcription factor from the paired homeobox family, have been implicated in recessive isolated microphthalmia. In this study, we use genome-wide single nucleotide polymorphism homozygosity mapping in unrelated small consanguineous pedigrees and a candidate gene approach to identify three further causative VSX2 mutations (two novel and one previously reported). All affected individuals with homozygous mutations had bilateral anophthalmia or severe microphthalmia with absent vision. In addition, we identified a novel inner retinal dystrophy in two carrier parents suggesting a semidominant effect for this particular VSX2 mutation. A further study of individuals with retinal degenerative conditions may reveal a causative role for heterozygous mutations in VSX2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.