The influence of photocatalytic degradation on molecular size fractionation (0.45 μm filtered, 100 kDa, 30 kDa and 3 kDa) of humic acid as a model compound of natural organic matter was investigated. The results were evaluated using UV-vis parameters, dissolved organic carbon (DOC) and excitation emission matrix (EEM) fluorescence spectral features. EEM fluorescence signatures displayed an irradiation period dependent transformation of humic-like fluorophores to fulvic-like fluorophores in accordance with the photocatalytic mineralization of HA. Molecular size distribution profiles expressed the formation of lower molecular size (<3 kDa) fractions through oxidative degradation of humic acid of higher molecular size fractions (100 kDa and 30 kDa fractions). The fluorescence-derived index (fluorescence intensity (FI), represented by the ratio of the emission intensity at λemis = 450 nm to that at λemis = 500 nm, following the excitation at λexc = 370 nm) was also investigated. The use of EEM features has proven to be a useful tool for monitoring the effect of photocatalytic degradation on the structure and molecular size distribution profile of HA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.