Energy efficiency in cellular mobile radio networks has recently gained great interest in the research community. The development of more energy efficient hardware and software components aside, effect of different deployment strategies on energy efficiency are also studied in the literature. The latter mainly consist of optimizing the number and the location of different types of base stations in order to minimize the total power consumption. Usually, in the literature, the total network power consumption is restricted to the sum of the power consumption of all base stations. However, the choice of a specific deployment also affects the exact implementation of the backhaul network, and consequently its power consumption, which should therefore be taken into account when devising energy efficient deployment. In this paper, we propose a new power consumption model for a mobile radio network considering backhaul. We then handle a case study and perform a comparison of the power consumption of three different heterogeneous network deployments, and show how backhaul has a non-negligible impact on total power consumption, which differs for different deployments. An energy efficiency analysis is also carried out for different area throughput targets.
Mobile operators are facing an exponential traffic growth due to the proliferation of portable devices that require a high-capacity connectivity. This, in turn, leads to a tremendous increase of the energy consumption of wireless access networks. A promising solution to this problem is the concept of heterogeneous networks, which is based on the dense deployment of low-cost and low-power base stations, in addition to the traditional macro cells. However, in such a scenario the energy consumed by the backhaul, which aggregates the traffic from each base station towards the metro/core segment, becomes significant and may limit the advantages of heterogeneous network deployments. This paper aims at assessing the impact of backhaul on the energy consumption of wireless access networks, taking into consideration different data traffic requirements (i.e., from todays to 2020 traffic levels). Three backhaul architectures combining different technologies (i.e., copper, fiber, and microwave) are considered. Results show that backhaul can amount to up to 50% of the power consumption of a wireless access network. On the other hand, hybrid backhaul architectures that combines fiber and microwave performs relatively well in scenarios where the wireless network is characterized by a high small-base-stations penetration rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.