Antibiotic resistance is a problem of deep scientific concern both in hospital and community settings. Rapid detection in clinical laboratories is essential for the judicious recognition of antimicrobial resistant organisms. Production of extended-spectrum β-lactamases (ESBLs) is a significant resistance-mechanism that impedes the antimicrobial treatment of infections caused by Enterobacteriaceae and is a serious threat to the currently available antibiotic armory. ESBLs are classified into several groups according to their amino acid sequence homology. Proper infection control practices and barriers are essential to prevent spread and outbreaks of ESBL producing bacteria. As bacteria have developed different strategies to counter the effects of antibiotics, the identification of the resistance mechanism may help in the discovery and design of new antimicrobial agents. The carbapenems are widely regarded as the drugs of choice for the treatment of severe infections caused by ESBL-producing Enterobacteriaceae, although comparative clinical trials are scarce. Hence, more expeditious diagnostic testing of ESBL-producing bacteria and the feasible modification of guidelines for community-onset bacteremia associated with different infections are prescribed.
Multiple drug-resistant bacteria are a severe and growing public health concern. Because relatively few antibiotics have been approved over recent years and because of the inability of existing antibiotics to combat bacterial infections fully, demand for unconventional biocides is intense. Metallic nanoparticles (NPs) offer a novel potential means of fighting bacteria. Although metallic NPs exert their effects through membrane protein damage, superoxide radicals and the generation of ions that interfere with the cell granules leading to the formation of condensed particles, their antimicrobial potential, and mechanisms of action are still debated. This article discusses the action of metallic NPs as antibacterial agents, their mechanism of action, and their effect on bacterial drug resistance. Based on encouraging data about the antibacterial effects of NP/antibiotic combinations, we propose that this concept be thoroughly researched to identify means of combating drug-resistant bacteria.
Multidrug resistance and production of extended spectrum β-lactamases (ESBLs) by enteric gram negative rods in hospitals and community continue to be a matter of scientific concern. This retrospective study was executed to assess the prevalence of ESBL-producing Escherichia coli and Klebsiella pneumoniae at two North Indian hospitals and to determine the risk factors associated with the acquisition of these organisms. A total of 346 bacterial isolates were obtained. Of these, 48.27% (n = 167) were confirmed to be ESBL producers while 51.73% (n = 179) were non ESBL-producers. Among the ESBL producers, 55.69% (n = 93) were E. coli and 44.31% (n = 74) were K. pneumoniae. ESBL producing isolates showed co-resistance to multitude of antibiotics tested. Length of hospital stay (>3 days) and previous exposure to antibiotics were found as significant risk factors (p = 0.01 and 0.02) associated with the acquisition of ESBL-producing E. coli and K. pneumoniae isolates. Imipenem and meropenem can be suggested as drugs of choice in our study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.