Filamin C (FLNc) and Xin actin-binding repeat-containing proteins (XIRPs) are multi-adapter proteins mainly expressed in cardiac and skeletal muscles that play important roles in the assembly and repair of myofibrils and their attachment to the membrane. We identified the dystrophin-binding protein aciculin (PGM5), as a novel interaction partner of FLNc and Xin. All three proteins colocalize at intercalated discs of cardiac muscle and myotendinous junctions of skeletal muscle, while FLNc and aciculin also colocalize in mature Z-discs. Bimolecular fluorescence complementation experiments in developing cultured mammalian skeletal muscle cells demonstrate that Xin and aciculin also interact in FLNc-containing immature myofibrils and areas of myofibrillar remodeling and repair induced by electrical pulse stimulation (EPS). FRAP experiments show that aciculin is a highly dynamic and mobile protein. Aciculin knockdown in myotubes leads to failure in myofibril assembly, alignment and membrane attachment, and massive reduction in myofibril number. A highly similar phenotype was found upon depletion of aciculin in zebrafish embryos. Our results point to a thus far unappreciated but essential function of aciculin in myofibril formation, maintenance and remodeling.
The striated muscle–specific actin-binding proteins Xin and Xirp2 are identified as novel ligands of the SH3 domains of the thin filament ruler nebulin and nebulette. The interaction is spatially restricted to structures associated with myofibril development or remodeling, indicating a role for these proteins in myofibril assembly and repair.
The z-disc is a structural component at the lateral borders of the sarcomere and is important for mechanical stability and contractility of both cardiac and skeletal muscles. Of note, the sarcomeric z-disc also represents a nodal point in cardiomyocyte function and signaling. Mutations of numerous z-disc proteins are associated with cardiomyopathies and muscle diseases. To identify additional z-disc proteins that might contribute to cardiac disease, we employed an in silico screen for cardiac-enriched cDNAs. This screen yielded a previously uncharacterized protein named cardiac-enriched FHL2-interacting protein (CEFIP), which exhibited a heart-and skeletal muscle-specific expression profile. Importantly, CEFIP was located at the z-disc and was up-regulated in several models of cardiomyopathy. We also found that CEFIP overexpression induced the fetal gene program and cardiomyocyte hypertrophy. Yeast two-hybrid screens revealed that CEFIP interacts with the calcineurin-binding protein four and a half LIM domains 2 (FHL2). Because FHL2 binds calcineurin, a phosphatase controlling hypertrophic signaling, we examined the effects of CEFIP on the calcineurin/nuclear factor of activated T-cell (NFAT) pathway. These experiments revealed that CEFIP overexpression further enhances calcineurin-dependent hypertrophic signal transduction, and its knockdown repressed hypertrophy and calcineurin/NFAT activity. In summary, we report on a previously uncharacterized protein CEFIP that modulates calcineurin/ NFAT signaling in cardiomyocytes, a finding with possible implications for the pathogenesis of cardiomyopathy.
Sarcomeres, the basic contractile units of striated muscle cells, contain arrays of thin (actin) and thick (myosin) filaments that slide past each other during contraction. The Ig-like domain-containing protein myotilin provides structural integrity to Z-discs—the boundaries between adjacent sarcomeres. Myotilin binds to Z-disc components, including F-actin and α-actinin-2, but the molecular mechanism of binding and implications of these interactions on Z-disc integrity are still elusive. To illuminate them, we used a combination of small-angle X-ray scattering, cross-linking mass spectrometry, and biochemical and molecular biophysics approaches. We discovered that myotilin displays conformational ensembles in solution. We generated a structural model of the F-actin:myotilin complex that revealed how myotilin interacts with and stabilizes F-actin via its Ig-like domains and flanking regions. Mutant myotilin designed with impaired F-actin binding showed increased dynamics in cells. Structural analyses and competition assays uncovered that myotilin displaces tropomyosin from F-actin. Our findings suggest a novel role of myotilin as a co-organizer of Z-disc assembly and advance our mechanistic understanding of myotilin’s structural role in Z-discs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.