Epilepsy is one of the most common neurological diseases and it causes profound morbidity and mortality. We identified the first de novo variant in KCNMA1 (c.2984 A > G (p.(N995S)))-encoding the BK channel-that causes epilepsy, but not paroxysmal dyskinesia, in two independent families. The c.2984 A > G (p.(N995S)) variant markedly increased the macroscopic potassium current by increasing both the channel open probability and channel open dwell time. The c.2984 A > G (p.(N995S)) variant did not affect the calcium sensitivity of the channel. We also identified three other variants of unknown significance (c.1554 G > T (p.(K518N)), c.1967A > C (p.(E656A)), and c.3476 A > G (p.(N1159S))) in three separate patients with divergent epileptic phenotypes. However, these variants did not affect the BK potassium current, and are therefore unlikely to be disease-causing. These results demonstrate that BK channel variants can cause epilepsy without paroxysmal dyskinesia. The underlying molecular mechanism can be increased activation of the BK channel by increased sensitivity to the voltage-dependent activation without affecting the sensitivity to the calcium-dependent activation. Our data suggest that the BK channel may represent a drug target for the treatment of epilepsy. Our data highlight the importance of functional electrophysiological studies of BK channel variants in distinguishing whether a genomic variant of unknown significance is a disease-causing variant or a benign variant.
Epilepsy is one of the most common neurological diseases. Here we report the first de novo mutation in the BK channel (p.N995S) that causes epilepsy in two independent families. The p.N995S mutant channel showed a markedly increased macroscopic potassium current mediated by increases in both channel open probability and channel open dwell time.Mutation p.N995S affects the voltage-activation pathway of BK channel, but does not affect the calcium sensitivity. Paxilline blocks potassium currents from both WT and mutant BK channels. We also identified two variants of unknown significance, p.E656A and p.N1159S in epilepsy patients. However, they do not affect BK channel functions, therefore, are unlikely to be a cause of disease. These results expand the BK channelopathy to a more common disease of epilepsy, suggest that the BK channel is a drug target for treatment of epilepsy, and highlight the importance of functional studies in the era of precision medicine.. CC-BY 4.0 International license not peer-reviewed) is the author/funder. It is made available under a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.