Background An alarming increase in recalcitrant dermatophytosis has been witnessed in India over the past decade. Drug resistance may play a major role in this scenario. Objectives The aim of the present study was to determine the prevalence of in vitro resistance to terbinafine, itraconazole and voriconazole in dermatophytes, and to identify underlying mutations in the fungal squalene epoxidase (SQLE) gene. Patients/Methods We analysed skin samples from 402 patients originating from eight locations in India. Fungi were identified by microbiological and molecular methods, tested for antifungal susceptibility (terbinafine, itraconazole, voriconazole), and investigated for missense mutations in SQLE. Results Trichophyton (T.) mentagrophytes internal transcribed spacer (ITS) Type VIII was found in 314 (78%) samples. Eighteen (5%) samples harboured species identified up to the T interdigitale/mentagrophytes complex, and T rubrum was detected in 19 (5%) samples. 71% of isolates were resistant to terbinafine. The amino acid substitution Phe397Leu in the squalene epoxidase of resistant T mentagrophytes was highly prevalent (91%). Two novel substitutions in resistant Trichophyton strains, Ser395Pro and Ser443Pro, were discovered. The substitution Ala448Thr was found in terbinafine‐sensitive and terbinafine‐resistant isolates but was associated with increased MICs of itraconazole and voriconazole. Conclusions The high frequencies of terbinafine resistance in dermatophytes are worrisome and demand monitoring and further research. Squalene epoxidase substitutions between Leu393 and Ser443 could serve as markers of resistance in the future.
BackgroundThe human granulocyte colony-stimulating factor (G-CSF) is routinely applied to support recovery of granulopoiesis during the course of cytotoxic chemotherapies. However, optimal use of the drug is largely unknown. We showed in the past that a biomathematical compartment model of human granulopoiesis can be used to make clinically relevant predictions regarding new, yet untested chemotherapy regimen. In the present paper, we aim to extend this model by a detailed pharmacokinetic and -dynamic modelling of two commonly used G-CSF derivatives Filgrastim and Pegfilgrastim.ResultsModel equations are based on our physiological understanding of the drugs which are delayed absorption of G-CSF when applied to the subcutaneous tissue, dose-dependent bioavailability, unspecific first order elimination, specific elimination in dependence on granulocyte counts and reversible protein binding. Pharmacokinetic differences between Filgrastim and Pegfilgrastim were modelled as different parameter sets. Our former cell-kinetic model of granulopoiesis was essentially preserved, except for a few additional assumptions and simplifications. We assumed a delayed action of G-CSF on the bone marrow, a delayed action of chemotherapy and differences between Filgrastim and Pegfilgrastim with respect to stimulation potency of the bone marrow. Additionally, we incorporated a model of combined action of Pegfilgrastim and Filgrastim or endogenous G-CSF which interact via concurrent receptor binding. Unknown pharmacokinetic or cell-kinetic parameters were determined by fitting the predictions of the model to available datasets of G-CSF applications, chemotherapy applications or combinations of it. Data were either extracted from the literature or were received from cooperating clinical study groups. Model predictions fitted well to both, datasets used for parameter estimation and validation scenarios as well. A unique set of parameters was identified which is valid for all scenarios considered. Differences in pharmacokinetic parameter estimates between Filgrastim and Pegfilgrastim were biologically plausible throughout.ConclusionWe conclude that we established a comprehensive biomathematical model to explain the dynamics of granulopoiesis under chemotherapy and applications of two different G-CSF derivatives. We aim to apply the model to a large variety of chemotherapy regimen in the future in order to optimize corresponding G-CSF schedules or to individualize G-CSF treatment according to the granulotoxic risk of a patient.
Anaemia is a common haematologic side effect of dose-dense multi-cycle cytotoxic polychemotherapy requiring erythrocyte transfusions or erythropoietin (EPO) administration. To simulate the effectiveness of different EPO application schedules, we performed both modelling of erythropoiesis under chemotherapy and pharmacokinetic and dynamic modelling of EPO applications in the framework of a single comprehensive biomathematical model. For this purpose, a cell kinetic model of bone marrow erythropoiesis was developed that is based on a set of differential compartment equations describing proliferation and maturation of erythropoietic cell stages. The system is regulated by several feedback loops comprising those mediated by EPO. We added a model of EPO absorption after injection at different sites and a pharmacokinetic model of EPO derivatives to account for the effects of external EPO applications. Chemotherapy is modelled by a transient depletion of bone marrow cell stages. Unknown model parameters were determined by fitting the predictions of the model to data sets of circulating erythrocytes, haemoglobin, haematocrit, percentage of reticulocytes or EPO serum concentrations derived from the literature or cooperating clinical study groups. Parameter fittings resulted in a good agreement of model and data. Depending on site of injection and derivative (Alfa, Beta, Delta, Darbepoetin), nine groups of EPO applications were distinguished differing in either absorption kinetics or pharmacokinetics. Finally, eight different chemotherapy protocols were modelled. The model was validated on the basis of scenarios not used for parameter fitting. Simulations were performed to analyze the impact of EPO applications on the risk of anaemia during chemotherapy. We conclude that we established a model of erythropoiesis under chemotherapy that explains a large set of time series data under EPO and chemotherapy applications. It allows predictions regarding yet untested EPO schedules. Prospective clinical studies are needed to validate model predictions and to explore the feasibility and effectiveness of the proposed schedules.
Pneumonia is considered to be one of the leading causes of death worldwide. The outcome depends on both, proper antibiotic treatment and the effectivity of the immune response of the host. However, due to the complexity of the immunologic cascade initiated during infection, the latter cannot be predicted easily. We construct a biomathematical model of the murine immune response during infection with pneumococcus aiming at predicting the outcome of antibiotic treatment. The model consists of a number of non-linear ordinary differential equations describing dynamics of pneumococcal population, the inflammatory cytokine IL-6, neutrophils and macrophages fighting the infection and destruction of alveolar tissue due to pneumococcus. Equations were derived by translating known biological mechanisms and assuming certain response kinetics. Antibiotic therapy is modelled by a transient depletion of bacteria. Unknown model parameters were determined by fitting the predictions of the model to data sets derived from mice experiments of pneumococcal lung infection with and without antibiotic treatment. Time series of pneumococcal population, debris, neutrophils, activated epithelial cells, macrophages, monocytes and IL-6 serum concentrations were available for this purpose. The antibiotics Ampicillin and Moxifloxacin were considered. Parameter fittings resulted in a good agreement of model and data for all experimental scenarios. Identifiability of parameters is also estimated. The model can be used to predict the performance of alternative schedules of antibiotic treatment. We conclude that we established a biomathematical model of pneumococcal lung infection in mice allowing predictions regarding the outcome of different schedules of antibiotic treatment. We aim at translating the model to the human situation in the near future.
BackgroundMathematical modelling of biological processes often requires a large variety of different data sets for parameter estimation and validation. It is common practice that clinical data are not available in raw formats but are provided as graphical representations. Hence, in order to include these data into environments used for model simulations and statistical analyses, it is necessary to extract them from their presentations in the literature. For this purpose, we developed the freely available open source tool ycasd. After establishing a coordinate system by simple axes definitions, it supports convenient retrieval of data points from arbitrary figures.ResultsAfter describing the general functionality and providing an overview of the programme interface, we demonstrate on an example how to use ycasd. A major advantage of ycasd is that it does not require a certain input file format to open and process figures. All options of ycasd are accessible through a single window which eases handling and speeds up data extraction. For subsequent processing of extracted data points, results can be formatted as a Matlab or an R matrix. We extensively compare the functionality and other features of ycasd with other publically available tools. Finally, we provide a short summary of our experiences with ycasd in the context of modelling.ConclusionsWe conclude that our tool is suitable for convenient and accurate data retrievals from graphical representations such as papers. Comparison of tools reveals that ycasd is a good compromise between easy and quick capturing of scientific data from publications and complexity. Our tool is routinely applied in the context of biological modelling, where numerous time series data are required to develop models. The software can also be useful for other kinds of analyses for which published data are required but are not available in raw formats such as systematic reviews and meta-analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.