BackgroundCritically ill patients develop atrophic muscle failure, which increases morbidity and mortality. Interleukin-1β (IL-1β) is activated early in sepsis. Whether IL-1β acts directly on muscle cells and whether its inhibition prevents atrophy is unknown. We aimed to investigate if IL-1β activation via the Nlrp3 inflammasome is involved in inflammation-induced atrophy.MethodsWe performed an experimental study and prospective animal trial. The effect of IL-1β on differentiated C2C12 muscle cells was investigated by analyzing gene-and-protein expression, and atrophy response. Polymicrobial sepsis was induced by cecum ligation and puncture surgery in Nlrp3 knockout and wild type mice. Skeletal muscle morphology, gene and protein expression, and atrophy markers were used to analyze the atrophy response. Immunostaining and reporter-gene assays showed that IL-1β signaling is contained and active in myocytes.ResultsImmunostaining and reporter gene assays showed that IL-1β signaling is contained and active in myocytes. IL-1β increased Il6 and atrogene gene expression resulting in myocyte atrophy. Nlrp3 knockout mice showed reduced IL-1β serum levels in sepsis. As determined by muscle morphology, organ weights, gene expression, and protein content, muscle atrophy was attenuated in septic Nlrp3 knockout mice, compared to septic wild-type mice 96 h after surgery.ConclusionsIL-1β directly acts on myocytes to cause atrophy in sepsis. Inhibition of IL-1β activation by targeting Nlrp3 could be useful to prevent inflammation-induced muscle failure in critically ill patients.Electronic supplementary materialThe online version of this article (doi:10.1186/s40635-016-0115-0) contains supplementary material, which is available to authorized users.
Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein, and LRRK2 mutants are recognized risk factors for Parkinson’s disease (PD). Although the precise mechanisms that control LRRK2 regulation and function are unclear, the importance of the kinase domain is strongly implicated, since 2 of the 5 most common familial LRRK2 mutations (G2019S and I2020T) are localized to the conserved DFGψ motif in the kinase core, and kinase inhibitors are under development. Combining the concept of regulatory (R) and catalytic (C) spines with kinetic and cell-based assays, we discovered a major regulatory mechanism embedded within the kinase domain and show that the DFG motif serves as a conformational switch that drives LRRK2 activation. LRRK2 is quite unusual in that the highly conserved Phe in the DFGψ motif, which is 1 of the 4 R-spine residues, is replaced with tyrosine (DY2018GI). A Y2018F mutation creates a hyperactive phenotype similar to the familial mutation G2019S. The hydroxyl moiety of Y2018 thus serves as a “brake” that stabilizes an inactive conformation; simply removing it destroys a key hydrogen-bonding node. Y2018F, like the pathogenic mutant I2020T, spontaneously forms LRRK2-decorated microtubules in cells, while the wild type and G2019S require kinase inhibitors to form filaments. We also explored 3 different mechanisms that create kinase-dead pseudokinases, including D2017A, which further emphasizes the highly synergistic role of key hydrophobic and hydrophilic/charged residues in the assembly of active LRRK2. We thus hypothesize that LRRK2 harbors a classical protein kinase switch mechanism that drives the dynamic activation of full-length LRRK2.
Background Critically ill patients frequently develop muscle atrophy and weakness in the intensive‐care‐unit setting [intensive care unit‐acquired weakness (ICUAW)]. Sepsis, systemic inflammation, and acute‐phase response are major risk factors. We reported earlier that the acute‐phase protein serum amyloid A1 (SAA1) is increased and accumulates in muscle of ICUAW patients, but its relevance was unknown. Our objectives were to identify SAA1 receptors and their downstream signalling pathways in myocytes and skeletal muscle and to investigate the role of SAA1 in inflammation‐induced muscle atrophy. Methods We performed cell‐based in vitro and animal in vivo experiments. The atrophic effect of SAA1 on differentiated C2C12 myotubes was investigated by analysing gene expression, protein content, and the atrophy phenotype. We used the cecal ligation and puncture model to induce polymicrobial sepsis in wild type mice, which were treated with the IкB kinase inhibitor Bristol‐Myers Squibb (BMS)‐345541 or vehicle. Morphological and molecular analyses were used to investigate the phenotype of inflammation‐induced muscle atrophy and the effects of BMS‐345541 treatment. Results The SAA1 receptors Tlr2, Tlr4, Cd36, P2rx7, Vimp, and Scarb1 were all expressed in myocytes and skeletal muscle. Treatment of differentiated C2C12 myotubes with recombinant SAA1 caused myotube atrophy and increased interleukin 6 (Il6) gene expression. These effects were mediated by Toll‐like receptors (TLR) 2 and 4. SAA1 increased the phosphorylation and activity of the transcription factor nuclear factor ‘kappa‐light‐chain‐enhancer' of activated B‐cells (NF‐κB) p65 via TLR2 and TLR4 leading to an increased binding of NF‐κB to NF‐κB response elements in the promoter region of its target genes resulting in an increased expression of NF‐κB target genes. In polymicrobial sepsis, skeletal muscle mass, tissue morphology, gene expression, and protein content were associated with the atrophy response. Inhibition of NF‐κB signalling by BMS‐345541 increased survival (28.6% vs. 91.7%, P < 0.01). BMS‐345541 diminished inflammation‐induced atrophy as shown by a reduced weight loss of the gastrocnemius/plantaris (vehicle: −21.2% and BMS‐345541: −10.4%; P < 0.05), tibialis anterior (vehicle: −22.7% and BMS‐345541: −17.1%; P < 0.05) and soleus (vehicle: −21.1% and BMS‐345541: −11.3%; P < 0.05) in septic mice. Analysis of the fiber type specific myocyte cross‐sectional area showed that BMS‐345541 reduced inflammation‐induced atrophy of slow/type I and fast/type II myofibers compared with vehicle‐treated septic mice. BMS‐345541 reversed the inflammation‐induced atrophy program as indicated by a reduced expression of the atrogenes Trim63/MuRF1, Fbxo32/Atrogin1, and Fbxo30/MuSA1. Conclusions SAA1 activates the TLR2/TLR4//NF‐κB p65 signalling pathway to cause myocyte atrophy. Systemic inhibition of the NF‐κB pathway reduced muscle atrophy and increased survival of septic mice. The SAA1/TLR2/TLR4//NF‐κB p65 atrophy pathway could have utility in combatting ICUAW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.