SummaryWe have produced 22 090 primary transgenic rice plants that carry a T-DNA insertion, which has resulted in 18 358 fertile lines. Genomic DNA gel-blot and PCR analyses have shown that approximately 65% of the population contains more than one copy of the inserted T-DNA. Hygromycin resistance tests revealed that transgenic plants contain an average of 1.4 loci of T-DNA inserts. Therefore, it can be estimated that approximately 25 700 taggings have been generated. The binary vector used in the insertion contained the promoterless b-glucuronidase (GUS) reporter gene with an intron and multiple splicing donors and acceptors immediately next to the right border. Therefore, this gene trap vector is able to detect a gene fusion between GUS and an endogenous gene, which is tagged by T-DNA. Histochemical GUS assays were carried out in the leaves and roots from 5353 lines, mature¯owers from 7026 lines, and developing seeds from 1948 lines. The data revealed that 1.6±2.1% of tested organs were GUS-positive in the tested organs, and that their GUS expression patterns were organ-or tissue-speci®c or ubiquitous in all parts of the plant. The large population of T-DNA-tagged lines will be useful for identifying insertional mutants in various genes and for discovering new genes in rice.
Rice contains several MADS box genes. It has been demonstrated previously that one of these genes, OsMADS1 (for Oryza sativa MADS box gene1 ), is expressed preferentially in flowers and causes early flowering when ectopically expressed in tobacco plants. In this study, we demonstrated that ectopic expression of OsMADS1 in rice also results in early flowering. To further investigate the role of OsMADS1 during rice flower development, we generated transgenic rice plants expressing altered OsMADS1 genes that contain missense mutations in the MADS domain. There was no visible alteration in the transgenic plants during the vegetative stage. However, transgenic panicles typically exhibited phenotypic alterations, including spikelets consisting of elongated leafy paleae and lemmas that exhibit a feature of open hull, two pairs of leafy palea-like and lemma-like lodicules, a decrease in stamen number, and an increase in the number of carpels. In addition, some spikelets generated an additional floret from the same rachilla. These characteristics are very similar to those of leafy hull sterile1 ( lhs1 ). The map position of OsMADS1 is closely linked to that of lhs1 on chromosome 3. Examination of lhs1 revealed that it contains two missense mutations in the OsMADS1 MADS domain. A genetic complementation experiment showed that the 11.9-kb genomic DNA fragment containing the wild-type OsMADS1 gene rescued the mutant phenotypes. In addition, ectopic expression of the OsMADS1 gene isolated from the lhs1 line resulted in lhs1 -conferred phenotypes. These lines of evidence demonstrate that OsMADS1 is the lhs1 gene. INTRODUCTIONIn response to floral induction, the inflorescence meristem becomes committed to flowering. LEAFY ( LFY ) and APE-TALA1 ( AP1 ) in Arabidopsis and FLORICAULA ( FLO ) and SQUAMOSA ( SQUA ) in Antirrhinum are responsible for promoting the specification of floral meristem identity (reviewed in Ma, 1994). The genes required for specifying the fate of floral organ primordia include AP1 , AP2 , AGAMOUS ( AG ), PISTILATA ( PI ), and AP3 in Arabidopsis and SQUA , PLENA ( PLE ), GLOBOSA ( GLO ), and DEFICIENS ( DEF ) in Antirrhinum (reviewed in Weigel and Meyerowitz, 1994). Excluding AP2 , these floral homeotic genes encode MADS box proteins that are highly conserved transcription factors in plants, animals, yeast, and fungi and that are regulated by the floral meristem identity gene LFY (Parcy et al., 1998;Wagner et al., 1999).Several other MADS box genes have more subtle functions associated with floral meristem and floral organ identity. Expression of AG-LIKE2 ( AGL2 ), AGL4 , and AGL9 of Arabidopsis begins after the onset of expression of floral meristem identity genes but before the activation of floral organ identity genes (Flanagan and Ma, 1994;Savidge et al., 1995;Mandel and Yanofsky, 1998). DEFH72 and DEFH200 of Antirrhinum appear to function in mediating interactions between the meristem and organ identity genes through direct interaction with PLE (Davies et al., 1996). FLORAL BINDING PROTEIN2 ( FBP2 ) o...
The most widespread dietary problem in the world is mineral deficiency. We used the nicotianamine synthase (NAS) gene to increase mineral contents in rice grains. Nicotianamine (NA) is a chelator of metals and a key component of metal homeostasis. We isolated activation-tagged mutant lines in which expression of a rice NAS gene, OsNAS3, was increased by introducing 35S enhancer elements. Shoots and roots of the OsNAS3 activationtagged plants (OsNAS3-D1) accumulated more Fe and Zn. Seeds from our OsNAS3-D1 plants grown on a paddy field contained elevated amounts of Fe (2.9-fold), Zn (2.2-fold), and Cu (1.7-fold). The NA level was increased 9.6-fold in OsNAS3-D1 seeds. Analysis by size exclusion chromatography coupled with inductively coupled plasma mass spectroscopy showed that WT and Os-NAS3-D1 seeds contained equal amounts of Fe bound to IP6, whereas OsNAS3-D1 had 7-fold more Fe bound to a low molecular mass, which was likely NA. Furthermore, this activation led to increased tolerance to Fe and Zn deficiencies and to excess metal (Zn, Cu, and Ni) toxicities. In contrast, disruption of OsNAS3 caused an opposite phenotype. To test the bioavailability of Fe, we fed anemic mice with either engineered or WT seeds for 4 weeks and measured their concentrations of hemoglobin and hematocrit. Mice fed with engineered seeds recovered to normal levels of hemoglobin and hematocrit within 2 weeks, whereas those that ate WT seeds remained anemic. Our results suggest that an increase in bioavailable mineral content in rice grains can be achieved by enhancing NAS expression. activation tagging ͉ bioavailability ͉ hemoglobin ͉ metal homeostasis
Uptake and translocation of metal nutrients are essential processes for plant growth. Graminaceous species release phytosiderophores that bind to Fe3+; these complexes are then transported across the plasma membrane. We have characterized OsYSL15, one of the rice (Oryza sativa) YS1-like (YSL) genes that are strongly induced by iron (Fe) deficiency. The OsYSL15 promoter fusion to β-glucuronidase showed that it was expressed in all root tissues when Fe was limited. In low-Fe leaves, the promoter became active in all tissues except epidermal cells. This activity was also detected in flowers and seeds. The OsYSL15:green fluorescent protein fusion was localized to the plasma membrane. OsYSL15 functionally complemented yeast strains defective in Fe uptake on media containing Fe3+-deoxymugineic acid and Fe2+-nicotianamine. Two insertional osysl15 mutants exhibited chlorotic phenotypes under Fe deficiency and had reduced Fe concentrations in their shoots, roots, and seeds. Nitric oxide treatment reversed this chlorosis under Fe-limiting conditions. Overexpression of OsYSL15 increased the Fe concentration in leaves and seeds from transgenic plants. Altogether, these results demonstrate roles for OsYSL15 in Fe uptake and distribution in rice plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.