This paper presents a numerical investigation of a two-dimensional (2D) oscillatory flow around a cylinder of different elliptic ratios, in order to study the effect of the elliptic form of the cylinder on the vorticity field and the hydrodynamic forces that act on it. The elliptic ratio ε was varied from 1 to 0.1, where the small axis is parallel to the flow direction, simulating cases ranging from a circular cylinder to the case of a cylinder with a profiled elliptic section. The investigations presented here are for Reynolds number Re = 100 and Keulegan number KC = 5. The numerical visualization of the flow for different elliptic ratios shows five different modes of vortex shedding (symmetric and asymmetric pairing of attached vortices, single-pair, double-pair, and chaotic), which depend on the range of the elliptic ratio. The results show that the longitudinal force increases with the reduction of the elliptic ratio. The transverse force appears from the elliptic ratio ε=0.75 and increases with the reduction of this ratio in the range of 0.75≥ε≥0.4, then decreases for ε<0.4. On the other hand, concerning the Morison coefficients the results show that the drag coefficient is sensitive to the swirling layout while the coefficient of inertia does not seem to be much affected by the geometry of the cylinder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.