Since the progress of digital medical imaging techniques, it has been needed to compress the variety of medical images. In medical imaging, reversible compression of image's region of interest (ROI) which is diagnostically relevant is considered essential. Then, improving the global compression rate of the image can also be obtained by separately coding the ROI part and the remaining image (called background). For this purpose, the present work proposes an efficient reversible discrete cosine transform (RDCT) based embedded image coder designed for lossless ROI coding in very high compression ratio. Motivated by the wavelet structure of DCT, the proposed rearranged structure is well coupled with a lossless embedded zerotree wavelet coder (LEZW), while the background is highly compressed using the set partitioning in hierarchical trees (SPIHT) technique. Results coding shows that the performance of the proposed new coder is much superior to that of various state-of-art still image compression methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.