This study presents an experimental investigation on the magnetorheological effect of a new magnetorheological elastomer–based adaptive bridge isolation bearing system. Two identical magnetorheological elastomer–based adaptive bridge bearings (isolators) were designed and fabricated. Electromagnets were incorporated to create a closed-loop magnetic path in the magnetorheological elastomer layers. A double-lap shear and compression test setup was utilized to characterize the mechanical properties of the system subjected to scaled structural cyclic forces and strains. Experimental results demonstrated that the effective stiffness of adaptive bridge bearings increases with increased applied magnetic field and a compressive force resulted in larger apparent shear stiffness. Also, increasing loading frequency resulted in larger apparent shear stiffness and lower magnetorheological effect and similarly, however, a compressive force resulted in smaller magnetorheological effects.
This study presents an experimental investigation on large-strain behavior of natural rubber– and silicone-based magnetorheological elastomers within a larger scope of structural vibration mitigation due to wind, traffic and seismic events. Magnetorheological elastomer samples with different weight percentages of iron particles, additives, and elastomer matrix were fabricated. The microstructures of specimens were examined, and their mechanical properties were investigated by a unique electromagnetic double-lap shear experimental setup capable of applying simultaneous compression and shear loads. The experimental results demonstrated that the isotropic natural rubber–based magnetorheological elastomers exhibit about 30% magnetorheological effect under large strains, while they achieve a higher magnetorheological effect under the combined axial and shear loading. The magnetorheological effect was 92% and 33% for 10% and 100% shear strains when 100 psi axial stress was applied. A natural rubber–based magnetorheological elastomer was further investigated applying dynamic cyclic load with and without compression load for different strains, frequencies, and magnetic field intensities. It was observed that for higher frequency, magnetorheological effect was reduced. Magnetorheological effects were 73% and 29% for 0.1 and 10 Hz frequencies, respectively, under 100 psi axial stress at 150% shear strain. The result of this study suggests that isotropic natural rubber–based magnetorheological elastomers may be suitable for high-demand-force applications, and in particular, in civil structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.