SummaryBackground18% of the world's population lives in India, and many states of India have populations similar to those of large countries. Action to effectively improve population health in India requires availability of reliable and comprehensive state-level estimates of disease burden and risk factors over time. Such comprehensive estimates have not been available so far for all major diseases and risk factors. Thus, we aimed to estimate the disease burden and risk factors in every state of India as part of the Global Burden of Disease (GBD) Study 2016.MethodsUsing all available data sources, the India State-level Disease Burden Initiative estimated burden (metrics were deaths, disability-adjusted life-years [DALYs], prevalence, incidence, and life expectancy) from 333 disease conditions and injuries and 84 risk factors for each state of India from 1990 to 2016 as part of GBD 2016. We divided the states of India into four epidemiological transition level (ETL) groups on the basis of the ratio of DALYs from communicable, maternal, neonatal, and nutritional diseases (CMNNDs) to those from non-communicable diseases (NCDs) and injuries combined in 2016. We assessed variations in the burden of diseases and risk factors between ETL state groups and between states to inform a more specific health-system response in the states and for India as a whole.FindingsDALYs due to NCDs and injuries exceeded those due to CMNNDs in 2003 for India, but this transition had a range of 24 years for the four ETL state groups. The age-standardised DALY rate dropped by 36·2% in India from 1990 to 2016. The numbers of DALYs and DALY rates dropped substantially for most CMNNDs between 1990 and 2016 across all ETL groups, but rates of reduction for CMNNDs were slowest in the low ETL state group. By contrast, numbers of DALYs increased substantially for NCDs in all ETL state groups, and increased significantly for injuries in all ETL state groups except the highest. The all-age prevalence of most leading NCDs increased substantially in India from 1990 to 2016, and a modest decrease was recorded in the age-standardised NCD DALY rates. The major risk factors for NCDs, including high systolic blood pressure, high fasting plasma glucose, high total cholesterol, and high body-mass index, increased from 1990 to 2016, with generally higher levels in higher ETL states; ambient air pollution also increased and was highest in the low ETL group. The incidence rate of the leading causes of injuries also increased from 1990 to 2016. The five leading individual causes of DALYs in India in 2016 were ischaemic heart disease, chronic obstructive pulmonary disease, diarrhoeal diseases, lower respiratory infections, and cerebrovascular disease; and the five leading risk factors for DALYs in 2016 were child and maternal malnutrition, air pollution, dietary risks, high systolic blood pressure, and high fasting plasma glucose. Behind these broad trends many variations existed between the ETL state groups and between states within the ETL groups. Of the ten le...
Background Malnutrition is a major contributor to disease burden in India. To inform subnational action, we aimed to assess the disease burden due to malnutrition and the trends in its indicators in every state of India in relation to Indian and global nutrition targets. Methods We analysed the disease burden attributable to child and maternal malnutrition, and the trends in the malnutrition indicators from 1990 to 2017 in every state of India using all accessible data from multiple sources, as part of Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017. The states were categorised into three groups using their Socio-demographic Index (SDI) calculated by GBD on the basis of per capita income, mean education, and fertility rate in women younger than 25 years. We projected the prevalence of malnutrition indicators for the states of India up to 2030 on the basis of the 1990-2017 trends for comparison with India National Nutrition Mission (NNM) 2022 and WHO and UNICEF 2030 targets. Findings Malnutrition was the predominant risk factor for death in children younger than 5 years of age in every state of India in 2017, accounting for 68•2% (95% UI 65•8-70•7) of the total under-5 deaths, and the leading risk factor for health loss for all ages, responsible for 17•3% (16•3-18•2) of the total disability-adjusted life years (DALYs). The malnutrition DALY rate was much higher in the low SDI than in the middle SDI and high SDI state groups. This rate varied 6•8 times between the states in 2017, and was highest in the states of Uttar Pradesh, Bihar, Assam, and Rajasthan. The prevalence of low birthweight in India in 2017 was 21•4% (20•8-21•9), child stunting 39•3% (38•7-40•1), child wasting 15•7% (15•6-15•9), child underweight 32•7% (32•3-33•1), anaemia in children 59•7% (56•2-63•8), anaemia in women 15-49 years of age 54•4% (53•7-55•2), exclusive breastfeeding 53•3% (51•5-54•9), and child overweight 11•5% (8•5-14•9). If the trends estimated up to 2017 for the indicators in the NNM 2022 continue in India, there would be 8•9% excess prevalence for low birthweight, 9•6% for stunting, 4•8% for underweight, 11•7% for anaemia in children, and 13•8% for anaemia in women relative to the 2022 targets. For the additional indicators in the WHO and UNICEF 2030 targets, the trends up to 2017 would lead to 10•4% excess prevalence for wasting, 14•5% excess prevalence for overweight, and 10•7% less exclusive breastfeeding in 2030. The prevalence of malnutrition indicators, their rates of improvement, and the gaps between projected prevalence and targets vary substantially between the states. Interpretation Malnutrition continues to be the leading risk factor for disease burden in India. It is encouraging that India has set ambitious targets to reduce malnutrition through NNM. The trends up to 2017 indicate that substantially higher rates of improvement will be needed for all malnutrition indicators in most states to achieve the Indian 2022 and the global 2030 targets. The state-specific findings in this report indicate the...
To test the hypothesis that room air is superior to 100% oxygen when asphyxiated newborns are resuscitated, 84 neonates (birth weight > 999 g) with heart rate < 80 and/or apnea at birth were allocated to be resuscitated with either room air (n = 42) or 100% oxygen (n = 42). Serial, unblinded observations of heart rates at 1, 3, 5, and 10 min and Apgar scores at 1 min revealed no significant differences between the two groups. At 5 min, median (25th and 75th percentile) Apgar scores were higher in the room air than in the oxygen group [8 (7-9) versus 7 (6-8), p = 0.03]. After the initial resuscitation, arterial partial pressure of oxygen, pH, and base excess were comparable in the two groups. Assisted ventilation was necessary for 2.4 (1.5-3.4) min in the room air group and 3.0 (2.0-4.0) min in the oxygen group (p = 0.14). The median time to first breath was 1.5 (1.0-2.0) min in both the room air and oxygen groups (p = 0.59), and the time to first cry was 3.0 (2.0-4.0) min and 3.5 (2.5-5.5) min in the room air and oxygen groups, respectively (p = 0.19). Three neonates in the room air group and four in the oxygen group died in the neonatal period. At 28 d, 72 of the 77 surviving neonates were available for follow-up (36 in each group), and none had any neurologic sequelae.(ABSTRACT TRUNCATED AT 250 WORDS)
Background: The issue of whether 21% O2 is more effective than 100% O2 for resuscitation of newborn infants remains controversial. Objectives: We have updated the systematic review and meta-analysis including all studies reporting resuscitation of newborn infants with 21 or 100% O2. Methods: Randomized or quasi-randomized studies of depressed newborn infants resuscitated with 21 or 100% O2 with or without masking of treatment were considered for inclusion. The outcomes of interest included neonatal mortality and hypoxic ischemic encephalopathy. Results: Ten studies fulfilled the inclusion criteria. Of these, 6 studies were identified as being strictly randomized. In total, 1,082 infants were allocated to resuscitation with 21% O2 and 1,051 infants with 100% O2. The risk of neonatal mortality was reduced in the 21% O2 group compared to the 100% O2 group both in the analysis of all studies (typical RR 0.69, 95% CI 0.54, 0.88) and in the analysis of strictly randomized studies (typical RR 0.32, 95% CI 0.12, 0.84). A trend toward a decrease in the risk of hypoxic ischemic encephalopathy stage 2 and 3 was noted with resuscitation in 21% O2 in the analysis of all studies (typical RR 0.88, 95% CI 0.72, 1.08). Conclusions: There is a significant reduction in the risk of neonatal mortality and a trend towards a reduction in the risk of severe hypoxic ischemic encephalopathy in newborns resuscitated with 21% O2.
Summary Background Although therapeutic hypothermia reduces death or disability after neonatal encephalopathy in high-income countries, its safety and efficacy in low-income and middle-income countries is unclear. We aimed to examine whether therapeutic hypothermia alongside optimal supportive intensive care reduces death or moderate or severe disability after neonatal encephalopathy in south Asia. Methods We did a multicountry open-label, randomised controlled trial in seven tertiary neonatal intensive care units in India, Sri Lanka, and Bangladesh. We enrolled infants born at or after 36 weeks of gestation with moderate or severe neonatal encephalopathy and a need for continued resuscitation at 5 min of age or an Apgar score of less than 6 at 5 min of age (for babies born in a hospital), or both, or an absence of crying by 5 min of age (for babies born at home). Using a web-based randomisation system, we allocated infants into a group receiving whole body hypothermia (33·5°C) for 72 h using a servo-controlled cooling device, or to usual care (control group), within 6 h of birth. All recruiting sites had facilities for invasive ventilation, cardiovascular support, and access to 3 Tesla MRI scanners and spectroscopy. Masking of the intervention was not possible, but those involved in the magnetic resonance biomarker analysis and neurodevelopmental outcome assessments were masked to the allocation. The primary outcome was a combined endpoint of death or moderate or severe disability at 18–22 months, assessed by the Bayley Scales of Infant and Toddler Development (third edition) and a detailed neurological examination. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov , NCT02387385 . Findings We screened 2296 infants between Aug 15, 2015, and Feb 15, 2019, of whom 576 infants were eligible for inclusion. After exclusions, we recruited 408 eligible infants and we assigned 202 to the hypothermia group and 206 to the control group. Primary outcome data were available for 195 (97%) of the 202 infants in the hypothermia group and 199 (97%) of the 206 control group infants. 98 (50%) infants in the hypothermia group and 94 (47%) infants in the control group died or had a moderate or severe disability (risk ratio 1·06; 95% CI 0·87–1·30; p=0·55). 84 infants (42%) in the hypothermia group and 63 (31%; p=0·022) infants in the control group died, of whom 72 (36%) and 49 (24%; p=0·0087) died during neonatal hospitalisation. Five serious adverse events were reported: three in the hypothermia group (one hospital readmission relating to pneumonia, one septic arthritis, and one suspected venous thrombosis), and two in the control group (one related to desaturations during MRI and other because of endotracheal tube displacement during transport for MRI). No adverse events were considered causally related to the study intervention. Interpretatio...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.