Analysis of fluorescence fluctuation experiments by the mean-segmented Q (MSQ) method was recently used to successfully characterize the oligomeric state and mobility of proteins within the nuclear envelope (NE) of living cells. However, two significant shortcomings of MSQ were recognized. Non-ideal detector behavior due to dead-time and afterpulsing as well as the lack of error analysis currently limit the potential of MSQ. This paper presents time-shifted MSQ (tsMSQ), a new formulation of MSQ that is robust with respect to dead-time and afterpulsing. In addition, a protocol for performing error analysis on tsMSQ data is introduced to assess the quality of fit models and estimate the uncertainties of fit parameters. Together, these developments significantly simplify and improve the analysis of fluorescence fluctuation data taken within the NE. To demonstrate these new developments, tsMSQ was used to characterize the oligomeric state and mobility of the luminal domains of two inner nuclear membrane SUN proteins. The results for the luminal domain of SUN2 obtained through tsMSQ without correction for non-ideal detector effects agree with a recent study that was conducted using the original MSQ formulation. Finally, tsMSQ was applied to characterize the oligomeric state and mobility of the luminal domain of the germline-restricted SUN3.
Delicate and transitory protein engagement at the plasma membrane (PM) is crucial to a broad range of cellular functions including cell motility, signal transduction, and virus replication. Here we describe a dual color (DC) extension of the fluorescence z-scan technique which has proven successful for quantification of peripheral membrane protein binding to the PM in living cells. We demonstrate that the co-expression of a second distinctly colored fluorescent protein provides a soluble reference species, which delineates the extent of the cell cytoplasm and lowers the detection threshold of z-scan PM binding measurements by an order of magnitude. DC z-scan generates an intensity profile for each detection channel that contains information on the axial distribution of the peripheral membrane and reference protein. Fit models for DC z-scan are developed and verified using simple model systems. Next, we apply the quantitative DC z-scan technique to investigate the binding of two peripheral membrane protein systems for which previous z-scan studies failed to detect binding: human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein and lipidation-deficient mutants of the fibroblast growth factor receptor substrate 2α. Our findings show that these mutations severely disrupt PM association of fibroblast growth factor receptor substrate 2α but do not eliminate it. We further detected binding of HIV-1 MA to the PM using DC z-scan. Interestingly, our data indicate that HIV-1 MA binds cooperatively to the PM with a dissociation coefficient of Kd ~16 μM and Hill coefficient of n ~2. SIGNIFICANCE Protein binding to the plasma membrane of cells plays an important role in a multitude of cell functions and disease processes. Quantitative binding studies of protein/membrane interactions are almost exclusively limited to in vitro systems and may produce results that poorly mimic the authentic interactions in living cells. We report quantitative measurements of plasma membrane binding directly in living cells by using dual color z-scan fluorescence, which improves the detection threshold by an order of magnitude compared to our previous single color technique. This advance allowed us to examine the role of mutations on binding affinity and identify the presence of cooperative binding in protein systems with relevance to HIV/AIDS and cancer biology.
Delicate and transitory protein engagement at the plasma membrane (PM) is crucial to a broad range of cellular functions, including cell motility, signal transduction, and virus replication. Here, we describe a dual-color (DC) extension of the fluorescence z-scan technique, which has proven successful for quantification of peripheral membrane protein binding to the PM in living cells. We demonstrate that the coexpression of a second, distinctly colored fluorescent protein provides a soluble reference species that delineates the extent of the cell cytoplasm and lowers the detection threshold of z-scan PM-binding measurements by an order of magnitude. DC z-scan generates an intensity profile for each detection channel that contains information on the axial distribution of the peripheral membrane and reference protein. Fit models for DC z-scan are developed and verified using simple model systems. Next, we apply the quantitative DC z-scan technique to investigate the binding of two peripheral membrane protein systems for which previous z-scan studies failed to detect binding: human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein and lipidation-deficient mutants of the fibroblast growth factor receptor substrate 2a. Our findings show that these mutations severely disrupt PM association of fibroblast growth factor receptor substrate 2a but do not eliminate it. We further detected binding of HIV-1 MA to the PM using DC z-scan. Interestingly, our data indicate that HIV-1 MA binds cooperatively to the PM with a dissociation coefficient of K d $16 mM and Hill coefficient of n $2.
The nucleus is delineated by the nuclear envelope (NE), which is a double membrane barrier composed of the inner and outer nuclear membranes as well as a ~40 nm wide lumen. In addition to its barrier function, the NE acts as a critical signaling node for a variety of cellular processes which are mediated by protein complexes within this subcellular compartment. While fluorescence fluctuation spectroscopy (FFS) is a powerful tool for characterizing protein complexes in living cells, it was recently demonstrated that conventional FFS methods are not suitable for applications in the NE because of the presence of slow nuclear membrane undulations. We previously addressed this challenge by developing time-shifted meansegmented Q (tsMSQ) analysis and applied it to successfully characterize protein homooligomerization in the NE. However, many NE complexes, such as the linker of the nucleoskeleton and cytoskeleton (LINC) complex, are formed by heterotypic interactions, which single-color tsMSQ is unable to characterize. Here, we describe the development of dual-color (DC) tsMSQ to analyze NE hetero-protein complexes built from proteins that carry two spectrally distinct fluorescent labels. Experiments performed on model systems demonstrate that DC tsMSQ properly identifies hetero-protein complexes and their stoichiometry in the NE by accounting for spectral crosstalk and local volume fluctuations. Finally, we applied DC tsMSQ to study the assembly of the LINC complex, a hetero-protein complex composed of Klarsicht/ANC-1/SYNE homology (KASH) and Sad1/UNC-84 (SUN) proteins, in the NE of living cells. Using DC tsMSQ, we demonstrate the ability of the SUN protein SUN2 and the KASH protein nesprin-2 to form a hetero-complex in vivo. Our results are consistent with previously published in vitro studies and demonstrate the utility of the DC tsMSQ technique for characterizing NE heteroprotein complexes. Statement of SignificanceProtein complexes found within the nuclear envelope (NE) play a vital role in regulating cellular functions ranging from gene expression to cellular movement. However, the assembly state of these complexes within their native environment remains poorly understood, which is compounded by a general lack of fluorescence techniques suitable for quantifying the oligomeric state of NE protein complexes. This study aims at addressing this issue by introducing dual-color time-shifted mean-segmented Q analysis as a fluorescence fluctuation method specifically designed to identify the average oligomeric state of hetero-protein complexes within the NE of living cells.
The nucleus is delineated by the nuclear envelope (NE), which is a double membrane barrier composed of the inner and outer nuclear membranes as well as a $40-nm wide lumen. In addition to its barrier function, the NE acts as a critical signaling node for a variety of cellular processes, which are mediated by protein complexes within this subcellular compartment. Although fluorescence fluctuation spectroscopy is a powerful tool for characterizing protein complexes in living cells, it was recently demonstrated that conventional fluorescence fluctuation spectroscopy methods are not suitable for applications in the NE because of the presence of slow nuclear membrane undulations. We previously addressed this challenge by developing time-shifted mean-segmented Q (tsMSQ) analysis and applied it to successfully characterize protein homo-oligomerization in the NE. However, many NE complexes, such as the linker of the nucleoskeleton and cytoskeleton complex, are formed by heterotypic interactions, which single-color tsMSQ is unable to characterize. Here, we describe the development of dual-color (DC) tsMSQ to analyze NE heteroprotein complexes built from proteins that carry two spectrally distinct fluorescent labels. Experiments performed on model systems demonstrate that DC tsMSQ properly identifies heteroprotein complexes and their stoichiometry in the NE by accounting for spectral cross talk and local volume fluctuations. Finally, we applied DC tsMSQ to study the assembly of the linker of the nucleoskeleton and cytoskeleton complex, a heteroprotein complex composed of Klarsicht/ANC-1/ SYNE homology and Sad1/UNC-84 (SUN) proteins, in the NE of living cells. Using DC tsMSQ, we demonstrate the ability of the SUN protein SUN2 and the Klarsicht/ANC-1/SYNE homology protein nesprin-2 to form a heterocomplex in vivo. Our results are consistent with previously published in vitro studies and demonstrate the utility of the DC tsMSQ technique for characterizing NE heteroprotein complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.