The use of next-generation sequencing technology has enabled phylogenetic studies with hun- dreds of thousands of taxa. Such large-scale phylogenies have become a critical component in genomic epidemiology in pathogens such as SARS-CoV-2 and influenza A virus. However, de- tailed phenotypic characterization of pathogens or generating a computationally tractable dataset for detailed phylogenetic analyses requires bias free subsampling of taxa. To address this need, we propose parnas, an objective and flexible algorithm to sample and select taxa that best repre- sent observed diversity by solving a generalized k-medoids problem on a phylogenetic tree. parnas solves this problem efficiently and exactly by novel optimizations and adapting algorithms from operations research. For more nuanced selections, taxa can be weighted with metadata or genetic sequence parameters, and the pool of potential representatives can be user-constrained. Motivated by influenza A virus genomic surveillance and vaccine design, parnas can be applied to identify representative taxa that optimally cover the diversity in a phylogeny within a specified distance radius. We demonstrated that parnas is more efficient and flexible than current approaches, and applied it to select representative influenza A virus in swine genes derived from over 5 years of genomic surveillance data. Our objective selection of 4 to 6 strains selected every two years from the 16 distinct genetic clades were sufficient to cover 80% of diversity circulating in US swine. We suggest that this method, through the objective selection of representatives in a phylogeny, provides criteria for rational multivalent vaccine design and for quantifying diversity. PARNAS is available at https://github.com/flu-crew/parnas.
The use of next-generation sequencing technology has enabled phylogenetic studies with hundreds of thousands of taxa. Such large-scale phylogenies have become a critical component in genomic epidemiology in pathogens such as SARS-CoV-2 and influenza A virus. However, detailed phenotypic characterization of pathogens or generating a computationally tractable dataset for detailed phylogenetic analyses requires objective subsampling of taxa. To address this need, we propose parnas, an objective and flexible algorithm to sample and select taxa that best represent observed diversity by solving a generalized k-medoids problem on a phylogenetic tree. parnas solves this problem efficiently and exactly by novel optimizations and adapting algorithms from operations research. For more nuanced selections, taxa can be weighted with metadata or genetic sequence parameters, and the pool of potential representatives can be user-constrained. Motivated by influenza A virus genomic surveillance and vaccine design, parnas can be applied to identify representative taxa that optimally cover the diversity in a phylogeny within a specified distance radius. We demonstrated that parnas is more efficient and flexible than existing approaches. To demonstrate its utility, we applied parnas to (i) quantify SARS-CoV-2 genetic diversity over time, (ii) select representative influenza A virus in swine genes derived from over 5 years of genomic surveillance data, and (iii) identify gaps in H3N2 human influenza A virus vaccine coverage. We suggest that our method, through the objective selection of representatives in a phylogeny, provides criteria for quantifying genetic diversity that has application in the the rational design of multivalent vaccines and genomic epidemiology. PARNAS is available at https://github.com/flu-crew/parnas.
The classic quantitative measure of phylogenetic diversity (PD) has been used to address problems in conservation biology, microbial ecology, and evolutionary biology. PD is the minimum total length of the branches in a phylogeny required to cover a specified set of taxa on the phylogeny. A general goal in the application of PD has been identifying a set of taxa of size k that maximize PD on a given phylogeny; this has been mirrored in active research to develop efficient algorithms for the problem. Other descriptive statistics, such as the minimum PD, average PD, and standard deviation of PD, can provide invaluable insight into the distribution of PD across a phylogeny (relative to a fixed value of k). However, there has been limited or no research on computing these statistics, especially when required for each clade in a phylogeny, enabling direct comparisons of PD between clades. We introduce efficient algorithms for computing PD and the associated descriptive statistics for a given phylogeny and each of its clades. In simulation studies, we demonstrate the ability of our algorithms to analyze large-scale phylogenies with applications in ecology and evolutionary biology. The software is available at https://github.com/flu-crew/PD_stats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.