Closed-loop decoder adaptation (CLDA) shows great promise to improve closed-loop brain-machine interface (BMI) performance. Developing adaptation algorithms capable of rapidly improving performance, independent of initial performance, may be crucial for clinical applications where patients have limited movement and sensory abilities due to motor deficits. Given the subject-decoder interactions inherent in closed-loop BMIs, the decoder adaptation time-scale may be of particular importance when initial performance is limited. Here, we present SmoothBatch, a CLDA algorithm which updates decoder parameters on a 1-2 min time-scale using an exponentially weighted sliding average. The algorithm was experimentally tested with one nonhuman primate performing a center-out reaching BMI task. SmoothBatch was seeded four ways with varying offline decoding power: 1) visual observation of a cursor ( n = 20), 2) ipsilateral arm movements ( n = 8), 3) baseline neural activity ( n = 17), and 4) arbitrary weights ( n = 11). SmoothBatch rapidly improved performance regardless of seeding, with performance improvements from 0.018 ±0.133 successes/min to > 8 successes/min within 13.1 ±5.5 min ( n = 56). After decoder adaptation ceased, the subject maintained high performance. Moreover, performance improvements were paralleled by SmoothBatch convergence, suggesting that CLDA involves a co-adaptation process between the subject and the decoder.
Brain-machine interfaces (BMI) create novel sensorimotor pathways for action. Much as the sensorimotor apparatus shapes natural motor control, the BMI pathway characteristics may also influence neuroprosthetic control. Here, we explore the influence of control and feedback rates, where control rate indicates how often motor commands are sent from the brain to the prosthetic, and feedback rate indicates how often visual feedback of the prosthetic is provided to the subject. We developed a new BMI that allows arbitrarily fast control and feedback rates, and used it to dissociate the effects of each rate in two monkeys. Increasing the control rate significantly improved control even when feedback rate was unchanged. Increasing the feedback rate further facilitated control. We also show that our high-rate BMI significantly outperformed state-of-the-art methods due to higher control and feedback rates, combined with a different point process mathematical encoding model. Our BMI paradigm can dissect the contribution of different elements in the sensorimotor pathway, providing a unique tool for studying neuroprosthetic control mechanisms.
Closed-loop decoder adaptation (CLDA) is an emerging paradigm for achieving rapid performance improvements in online brain-machine interface (BMI) operation. Designing an effective CLDA algorithm requires making multiple important decisions, including choosing the timescale of adaptation, selecting which decoder parameters to adapt, crafting the corresponding update rules, and designing CLDA parameters. These design choices, combined with the specific settings of CLDA parameters, will directly affect the algorithm's ability to make decoder parameters converge to values that optimize performance. In this article, we present a general framework for the design and analysis of CLDA algorithms and support our results with experimental data of two monkeys performing a BMI task. First, we analyze and compare existing CLDA algorithms to highlight the importance of four critical design elements: the adaptation timescale, selective parameter adaptation, smooth decoder updates, and intuitive CLDA parameters. Second, we introduce mathematical convergence analysis using measures such as mean-squared error and KL divergence as a useful paradigm for evaluating the convergence properties of a prototype CLDA algorithm before experimental testing. By applying these measures to an existing CLDA algorithm, we demonstrate that our convergence analysis is an effective analytical tool that can ultimately inform and improve the design of CLDA algorithms.
Overall, our results demonstrate proficient, continuous BMI control using LFPs and provide insight into the subject-specific spectral patterns of LFP activity modulated during control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.